Metamath Proof Explorer


Theorem isabv

Description: Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvfval.a A=AbsValR
abvfval.b B=BaseR
abvfval.p +˙=+R
abvfval.t ·˙=R
abvfval.z 0˙=0R
Assertion isabv RRingFAF:B0+∞xBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy

Proof

Step Hyp Ref Expression
1 abvfval.a A=AbsValR
2 abvfval.b B=BaseR
3 abvfval.p +˙=+R
4 abvfval.t ·˙=R
5 abvfval.z 0˙=0R
6 1 2 3 4 5 abvfval RRingA=f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
7 6 eleq2d RRingFAFf0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
8 fveq1 f=Ffx=Fx
9 8 eqeq1d f=Ffx=0Fx=0
10 9 bibi1d f=Ffx=0x=0˙Fx=0x=0˙
11 fveq1 f=Ffx·˙y=Fx·˙y
12 fveq1 f=Ffy=Fy
13 8 12 oveq12d f=Ffxfy=FxFy
14 11 13 eqeq12d f=Ffx·˙y=fxfyFx·˙y=FxFy
15 fveq1 f=Ffx+˙y=Fx+˙y
16 8 12 oveq12d f=Ffx+fy=Fx+Fy
17 15 16 breq12d f=Ffx+˙yfx+fyFx+˙yFx+Fy
18 14 17 anbi12d f=Ffx·˙y=fxfyfx+˙yfx+fyFx·˙y=FxFyFx+˙yFx+Fy
19 18 ralbidv f=FyBfx·˙y=fxfyfx+˙yfx+fyyBFx·˙y=FxFyFx+˙yFx+Fy
20 10 19 anbi12d f=Ffx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fyFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy
21 20 ralbidv f=FxBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fyxBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy
22 21 elrab Ff0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fyF0+∞BxBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy
23 ovex 0+∞V
24 2 fvexi BV
25 23 24 elmap F0+∞BF:B0+∞
26 25 anbi1i F0+∞BxBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+FyF:B0+∞xBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy
27 22 26 bitri Ff0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fyF:B0+∞xBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy
28 7 27 bitrdi RRingFAF:B0+∞xBFx=0x=0˙yBFx·˙y=FxFyFx+˙yFx+Fy