Metamath Proof Explorer


Theorem isat3

Description: The predicate "is an atom". ( elat2 analog.) (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses isat3.b B=BaseK
isat3.l ˙=K
isat3.z 0˙=0.K
isat3.a A=AtomsK
Assertion isat3 KAtLatPAPBP0˙xBx˙Px=Px=0˙

Proof

Step Hyp Ref Expression
1 isat3.b B=BaseK
2 isat3.l ˙=K
3 isat3.z 0˙=0.K
4 isat3.a A=AtomsK
5 eqid K=K
6 1 3 5 4 isat KAtLatPAPB0˙KP
7 simpl KAtLatPBKAtLat
8 1 3 atl0cl KAtLat0˙B
9 8 adantr KAtLatPB0˙B
10 simpr KAtLatPBPB
11 eqid <K=<K
12 1 2 11 5 cvrval2 KAtLat0˙BPB0˙KP0˙<KPxB0˙<Kxx˙Px=P
13 7 9 10 12 syl3anc KAtLatPB0˙KP0˙<KPxB0˙<Kxx˙Px=P
14 1 11 3 atlltn0 KAtLatPB0˙<KPP0˙
15 1 11 3 atlltn0 KAtLatxB0˙<Kxx0˙
16 15 adantlr KAtLatPBxB0˙<Kxx0˙
17 16 imbi1d KAtLatPBxB0˙<Kxx=Px0˙x=P
18 17 imbi2d KAtLatPBxBx˙P0˙<Kxx=Px˙Px0˙x=P
19 impexp 0˙<Kxx˙Px=P0˙<Kxx˙Px=P
20 bi2.04 0˙<Kxx˙Px=Px˙P0˙<Kxx=P
21 19 20 bitri 0˙<Kxx˙Px=Px˙P0˙<Kxx=P
22 orcom x=Px=0˙x=0˙x=P
23 neor x=0˙x=Px0˙x=P
24 22 23 bitri x=Px=0˙x0˙x=P
25 24 imbi2i x˙Px=Px=0˙x˙Px0˙x=P
26 18 21 25 3bitr4g KAtLatPBxB0˙<Kxx˙Px=Px˙Px=Px=0˙
27 26 ralbidva KAtLatPBxB0˙<Kxx˙Px=PxBx˙Px=Px=0˙
28 14 27 anbi12d KAtLatPB0˙<KPxB0˙<Kxx˙Px=PP0˙xBx˙Px=Px=0˙
29 13 28 bitr2d KAtLatPBP0˙xBx˙Px=Px=0˙0˙KP
30 29 pm5.32da KAtLatPBP0˙xBx˙Px=Px=0˙PB0˙KP
31 6 30 bitr4d KAtLatPAPBP0˙xBx˙Px=Px=0˙
32 3anass PBP0˙xBx˙Px=Px=0˙PBP0˙xBx˙Px=Px=0˙
33 31 32 bitr4di KAtLatPAPBP0˙xBx˙Px=Px=0˙