Metamath Proof Explorer


Theorem isch3

Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in Beran p. 96). Remark 3.12 of Beran p. 107. (Contributed by NM, 24-Dec-2001) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion isch3 H C H S f Cauchy f : H x H f v x

Proof

Step Hyp Ref Expression
1 isch2 H C H S f x f : H f v x x H
2 ax-hcompl f Cauchy x f v x
3 rexex x f v x x f v x
4 2 3 syl f Cauchy x f v x
5 19.29 x f : H f v x x H x f v x x f : H f v x x H f v x
6 4 5 sylan2 x f : H f v x x H f Cauchy x f : H f v x x H f v x
7 id f : H f v x x H f : H f v x x H
8 7 imp f : H f v x x H f : H f v x x H
9 8 an12s f : H f : H f v x x H f v x x H
10 simprr f : H f : H f v x x H f v x f v x
11 9 10 jca f : H f : H f v x x H f v x x H f v x
12 11 ex f : H f : H f v x x H f v x x H f v x
13 12 eximdv f : H x f : H f v x x H f v x x x H f v x
14 13 com12 x f : H f v x x H f v x f : H x x H f v x
15 df-rex x H f v x x x H f v x
16 14 15 syl6ibr x f : H f v x x H f v x f : H x H f v x
17 6 16 syl x f : H f v x x H f Cauchy f : H x H f v x
18 17 ex x f : H f v x x H f Cauchy f : H x H f v x
19 nfv x f Cauchy
20 nfv x f : H
21 nfre1 x x H f v x
22 20 21 nfim x f : H x H f v x
23 19 22 nfim x f Cauchy f : H x H f v x
24 bi2.04 f Cauchy f : H x H f v x f : H f Cauchy x H f v x
25 hlimcaui f v x f Cauchy
26 25 imim1i f Cauchy x H f v x f v x x H f v x
27 rexex x H f v x x f v x
28 hlimeui x f v x ∃! x f v x
29 27 28 sylib x H f v x ∃! x f v x
30 exancom x x H f v x x f v x x H
31 15 30 sylbb x H f v x x f v x x H
32 eupick ∃! x f v x x f v x x H f v x x H
33 29 31 32 syl2anc x H f v x f v x x H
34 26 33 syli f Cauchy x H f v x f v x x H
35 34 imim2i f : H f Cauchy x H f v x f : H f v x x H
36 24 35 sylbi f Cauchy f : H x H f v x f : H f v x x H
37 36 impd f Cauchy f : H x H f v x f : H f v x x H
38 23 37 alrimi f Cauchy f : H x H f v x x f : H f v x x H
39 18 38 impbii x f : H f v x x H f Cauchy f : H x H f v x
40 39 albii f x f : H f v x x H f f Cauchy f : H x H f v x
41 df-ral f Cauchy f : H x H f v x f f Cauchy f : H x H f v x
42 40 41 bitr4i f x f : H f v x x H f Cauchy f : H x H f v x
43 42 anbi2i H S f x f : H f v x x H H S f Cauchy f : H x H f v x
44 1 43 bitri H C H S f Cauchy f : H x H f v x