Metamath Proof Explorer


Theorem isclwwlk

Description: Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypotheses clwwlk.v V=VtxG
clwwlk.e E=EdgG
Assertion isclwwlk WClWWalksGWWordVWi0..^W1WiWi+1ElastSWW0E

Proof

Step Hyp Ref Expression
1 clwwlk.v V=VtxG
2 clwwlk.e E=EdgG
3 neeq1 w=WwW
4 fveq2 w=Ww=W
5 4 oveq1d w=Ww1=W1
6 5 oveq2d w=W0..^w1=0..^W1
7 fveq1 w=Wwi=Wi
8 fveq1 w=Wwi+1=Wi+1
9 7 8 preq12d w=Wwiwi+1=WiWi+1
10 9 eleq1d w=Wwiwi+1EWiWi+1E
11 6 10 raleqbidv w=Wi0..^w1wiwi+1Ei0..^W1WiWi+1E
12 fveq2 w=WlastSw=lastSW
13 fveq1 w=Ww0=W0
14 12 13 preq12d w=WlastSww0=lastSWW0
15 14 eleq1d w=WlastSww0ElastSWW0E
16 3 11 15 3anbi123d w=Wwi0..^w1wiwi+1ElastSww0EWi0..^W1WiWi+1ElastSWW0E
17 16 elrab WwWordV|wi0..^w1wiwi+1ElastSww0EWWordVWi0..^W1WiWi+1ElastSWW0E
18 1 2 clwwlk ClWWalksG=wWordV|wi0..^w1wiwi+1ElastSww0E
19 18 eleq2i WClWWalksGWwWordV|wi0..^w1wiwi+1ElastSww0E
20 3anass WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
21 anass WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
22 3anass Wi0..^W1WiWi+1ElastSWW0EWi0..^W1WiWi+1ElastSWW0E
23 22 bicomi Wi0..^W1WiWi+1ElastSWW0EWi0..^W1WiWi+1ElastSWW0E
24 23 anbi2i WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
25 20 21 24 3bitri WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
26 17 19 25 3bitr4i WClWWalksGWWordVWi0..^W1WiWi+1ElastSWW0E