Metamath Proof Explorer


Theorem isdrngo1

Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G=1stR
isdivrng1.2 H=2ndR
isdivrng1.3 Z=GIdG
isdivrng1.4 X=ranG
Assertion isdrngo1 RDivRingOpsRRingOpsHXZ×XZGrpOp

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G=1stR
2 isdivrng1.2 H=2ndR
3 isdivrng1.3 Z=GIdG
4 isdivrng1.4 X=ranG
5 df-drngo DivRingOps=gh|ghRingOpshrangGIdg×rangGIdgGrpOp
6 5 relopabiv RelDivRingOps
7 1st2nd RelDivRingOpsRDivRingOpsR=1stR2ndR
8 6 7 mpan RDivRingOpsR=1stR2ndR
9 relrngo RelRingOps
10 1st2nd RelRingOpsRRingOpsR=1stR2ndR
11 9 10 mpan RRingOpsR=1stR2ndR
12 11 adantr RRingOpsHXZ×XZGrpOpR=1stR2ndR
13 1 2 opeq12i GH=1stR2ndR
14 13 eqeq2i R=GHR=1stR2ndR
15 2 fvexi HV
16 isdivrngo HVGHDivRingOpsGHRingOpsHranGGIdG×ranGGIdGGrpOp
17 15 16 ax-mp GHDivRingOpsGHRingOpsHranGGIdG×ranGGIdGGrpOp
18 3 sneqi Z=GIdG
19 4 18 difeq12i XZ=ranGGIdG
20 19 19 xpeq12i XZ×XZ=ranGGIdG×ranGGIdG
21 20 reseq2i HXZ×XZ=HranGGIdG×ranGGIdG
22 21 eleq1i HXZ×XZGrpOpHranGGIdG×ranGGIdGGrpOp
23 22 anbi2i GHRingOpsHXZ×XZGrpOpGHRingOpsHranGGIdG×ranGGIdGGrpOp
24 17 23 bitr4i GHDivRingOpsGHRingOpsHXZ×XZGrpOp
25 eleq1 R=GHRDivRingOpsGHDivRingOps
26 eleq1 R=GHRRingOpsGHRingOps
27 26 anbi1d R=GHRRingOpsHXZ×XZGrpOpGHRingOpsHXZ×XZGrpOp
28 25 27 bibi12d R=GHRDivRingOpsRRingOpsHXZ×XZGrpOpGHDivRingOpsGHRingOpsHXZ×XZGrpOp
29 24 28 mpbiri R=GHRDivRingOpsRRingOpsHXZ×XZGrpOp
30 14 29 sylbir R=1stR2ndRRDivRingOpsRRingOpsHXZ×XZGrpOp
31 8 12 30 pm5.21nii RDivRingOpsRRingOpsHXZ×XZGrpOp