Metamath Proof Explorer


Theorem divrngcl

Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G=1stR
isdivrng1.2 H=2ndR
isdivrng1.3 Z=GIdG
isdivrng1.4 X=ranG
Assertion divrngcl RDivRingOpsAXZBXZAHBXZ

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G=1stR
2 isdivrng1.2 H=2ndR
3 isdivrng1.3 Z=GIdG
4 isdivrng1.4 X=ranG
5 1 2 3 4 isdrngo1 RDivRingOpsRRingOpsHXZ×XZGrpOp
6 ovres AXZBXZAHXZ×XZB=AHB
7 6 adantl RRingOpsHXZ×XZGrpOpAXZBXZAHXZ×XZB=AHB
8 eqid ranHXZ×XZ=ranHXZ×XZ
9 8 grpocl HXZ×XZGrpOpAranHXZ×XZBranHXZ×XZAHXZ×XZBranHXZ×XZ
10 9 3expib HXZ×XZGrpOpAranHXZ×XZBranHXZ×XZAHXZ×XZBranHXZ×XZ
11 10 adantl RRingOpsHXZ×XZGrpOpAranHXZ×XZBranHXZ×XZAHXZ×XZBranHXZ×XZ
12 grporndm HXZ×XZGrpOpranHXZ×XZ=domdomHXZ×XZ
13 12 adantl RRingOpsHXZ×XZGrpOpranHXZ×XZ=domdomHXZ×XZ
14 difss XZX
15 xpss12 XZXXZXXZ×XZX×X
16 14 14 15 mp2an XZ×XZX×X
17 1 2 4 rngosm RRingOpsH:X×XX
18 17 fdmd RRingOpsdomH=X×X
19 16 18 sseqtrrid RRingOpsXZ×XZdomH
20 ssdmres XZ×XZdomHdomHXZ×XZ=XZ×XZ
21 19 20 sylib RRingOpsdomHXZ×XZ=XZ×XZ
22 21 adantr RRingOpsHXZ×XZGrpOpdomHXZ×XZ=XZ×XZ
23 22 dmeqd RRingOpsHXZ×XZGrpOpdomdomHXZ×XZ=domXZ×XZ
24 dmxpid domXZ×XZ=XZ
25 23 24 eqtrdi RRingOpsHXZ×XZGrpOpdomdomHXZ×XZ=XZ
26 13 25 eqtrd RRingOpsHXZ×XZGrpOpranHXZ×XZ=XZ
27 26 eleq2d RRingOpsHXZ×XZGrpOpAranHXZ×XZAXZ
28 26 eleq2d RRingOpsHXZ×XZGrpOpBranHXZ×XZBXZ
29 27 28 anbi12d RRingOpsHXZ×XZGrpOpAranHXZ×XZBranHXZ×XZAXZBXZ
30 26 eleq2d RRingOpsHXZ×XZGrpOpAHXZ×XZBranHXZ×XZAHXZ×XZBXZ
31 11 29 30 3imtr3d RRingOpsHXZ×XZGrpOpAXZBXZAHXZ×XZBXZ
32 31 imp RRingOpsHXZ×XZGrpOpAXZBXZAHXZ×XZBXZ
33 7 32 eqeltrrd RRingOpsHXZ×XZGrpOpAXZBXZAHBXZ
34 33 3impb RRingOpsHXZ×XZGrpOpAXZBXZAHBXZ
35 5 34 syl3an1b RDivRingOpsAXZBXZAHBXZ