Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdivrng1.1 | |
|
isdivrng1.2 | |
||
isdivrng1.3 | |
||
isdivrng1.4 | |
||
Assertion | divrngcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdivrng1.1 | |
|
2 | isdivrng1.2 | |
|
3 | isdivrng1.3 | |
|
4 | isdivrng1.4 | |
|
5 | 1 2 3 4 | isdrngo1 | |
6 | ovres | |
|
7 | 6 | adantl | |
8 | eqid | |
|
9 | 8 | grpocl | |
10 | 9 | 3expib | |
11 | 10 | adantl | |
12 | grporndm | |
|
13 | 12 | adantl | |
14 | difss | |
|
15 | xpss12 | |
|
16 | 14 14 15 | mp2an | |
17 | 1 2 4 | rngosm | |
18 | 17 | fdmd | |
19 | 16 18 | sseqtrrid | |
20 | ssdmres | |
|
21 | 19 20 | sylib | |
22 | 21 | adantr | |
23 | 22 | dmeqd | |
24 | dmxpid | |
|
25 | 23 24 | eqtrdi | |
26 | 13 25 | eqtrd | |
27 | 26 | eleq2d | |
28 | 26 | eleq2d | |
29 | 27 28 | anbi12d | |
30 | 26 | eleq2d | |
31 | 11 29 30 | 3imtr3d | |
32 | 31 | imp | |
33 | 7 32 | eqeltrrd | |
34 | 33 | 3impb | |
35 | 5 34 | syl3an1b | |