Metamath Proof Explorer


Theorem isfull

Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfull.b B=BaseC
isfull.j J=HomD
Assertion isfull FCFullDGFCFuncDGxByBranxGy=FxJFy

Proof

Step Hyp Ref Expression
1 isfull.b B=BaseC
2 isfull.j J=HomD
3 fullfunc CFullDCFuncD
4 3 ssbri FCFullDGFCFuncDG
5 df-br FCFuncDGFGCFuncD
6 funcrcl FGCFuncDCCatDCat
7 5 6 sylbi FCFuncDGCCatDCat
8 oveq12 c=Cd=DcFuncd=CFuncD
9 8 breqd c=Cd=DfcFuncdgfCFuncDg
10 simpl c=Cd=Dc=C
11 10 fveq2d c=Cd=DBasec=BaseC
12 11 1 eqtr4di c=Cd=DBasec=B
13 simpr c=Cd=Dd=D
14 13 fveq2d c=Cd=DHomd=HomD
15 14 2 eqtr4di c=Cd=DHomd=J
16 15 oveqd c=Cd=DfxHomdfy=fxJfy
17 16 eqeq2d c=Cd=Dranxgy=fxHomdfyranxgy=fxJfy
18 12 17 raleqbidv c=Cd=DyBasecranxgy=fxHomdfyyBranxgy=fxJfy
19 12 18 raleqbidv c=Cd=DxBasecyBasecranxgy=fxHomdfyxByBranxgy=fxJfy
20 9 19 anbi12d c=Cd=DfcFuncdgxBasecyBasecranxgy=fxHomdfyfCFuncDgxByBranxgy=fxJfy
21 20 opabbidv c=Cd=Dfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy=fg|fCFuncDgxByBranxgy=fxJfy
22 df-full Full=cCat,dCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
23 ovex CFuncDV
24 simpl fCFuncDgxByBranxgy=fxJfyfCFuncDg
25 24 ssopab2i fg|fCFuncDgxByBranxgy=fxJfyfg|fCFuncDg
26 opabss fg|fCFuncDgCFuncD
27 25 26 sstri fg|fCFuncDgxByBranxgy=fxJfyCFuncD
28 23 27 ssexi fg|fCFuncDgxByBranxgy=fxJfyV
29 21 22 28 ovmpoa CCatDCatCFullD=fg|fCFuncDgxByBranxgy=fxJfy
30 7 29 syl FCFuncDGCFullD=fg|fCFuncDgxByBranxgy=fxJfy
31 30 breqd FCFuncDGFCFullDGFfg|fCFuncDgxByBranxgy=fxJfyG
32 relfunc RelCFuncD
33 32 brrelex12i FCFuncDGFVGV
34 breq12 f=Fg=GfCFuncDgFCFuncDG
35 simpr f=Fg=Gg=G
36 35 oveqd f=Fg=Gxgy=xGy
37 36 rneqd f=Fg=Granxgy=ranxGy
38 simpl f=Fg=Gf=F
39 38 fveq1d f=Fg=Gfx=Fx
40 38 fveq1d f=Fg=Gfy=Fy
41 39 40 oveq12d f=Fg=GfxJfy=FxJFy
42 37 41 eqeq12d f=Fg=Granxgy=fxJfyranxGy=FxJFy
43 42 2ralbidv f=Fg=GxByBranxgy=fxJfyxByBranxGy=FxJFy
44 34 43 anbi12d f=Fg=GfCFuncDgxByBranxgy=fxJfyFCFuncDGxByBranxGy=FxJFy
45 eqid fg|fCFuncDgxByBranxgy=fxJfy=fg|fCFuncDgxByBranxgy=fxJfy
46 44 45 brabga FVGVFfg|fCFuncDgxByBranxgy=fxJfyGFCFuncDGxByBranxGy=FxJFy
47 33 46 syl FCFuncDGFfg|fCFuncDgxByBranxgy=fxJfyGFCFuncDGxByBranxGy=FxJFy
48 31 47 bitrd FCFuncDGFCFullDGFCFuncDGxByBranxGy=FxJFy
49 48 bianabs FCFuncDGFCFullDGxByBranxGy=FxJFy
50 4 49 biadanii FCFullDGFCFuncDGxByBranxGy=FxJFy