Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfull.b | |
|
isfull.j | |
||
Assertion | isfull | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfull.b | |
|
2 | isfull.j | |
|
3 | fullfunc | |
|
4 | 3 | ssbri | |
5 | df-br | |
|
6 | funcrcl | |
|
7 | 5 6 | sylbi | |
8 | oveq12 | |
|
9 | 8 | breqd | |
10 | simpl | |
|
11 | 10 | fveq2d | |
12 | 11 1 | eqtr4di | |
13 | simpr | |
|
14 | 13 | fveq2d | |
15 | 14 2 | eqtr4di | |
16 | 15 | oveqd | |
17 | 16 | eqeq2d | |
18 | 12 17 | raleqbidv | |
19 | 12 18 | raleqbidv | |
20 | 9 19 | anbi12d | |
21 | 20 | opabbidv | |
22 | df-full | |
|
23 | ovex | |
|
24 | simpl | |
|
25 | 24 | ssopab2i | |
26 | opabss | |
|
27 | 25 26 | sstri | |
28 | 23 27 | ssexi | |
29 | 21 22 28 | ovmpoa | |
30 | 7 29 | syl | |
31 | 30 | breqd | |
32 | relfunc | |
|
33 | 32 | brrelex12i | |
34 | breq12 | |
|
35 | simpr | |
|
36 | 35 | oveqd | |
37 | 36 | rneqd | |
38 | simpl | |
|
39 | 38 | fveq1d | |
40 | 38 | fveq1d | |
41 | 39 40 | oveq12d | |
42 | 37 41 | eqeq12d | |
43 | 42 | 2ralbidv | |
44 | 34 43 | anbi12d | |
45 | eqid | |
|
46 | 44 45 | brabga | |
47 | 33 46 | syl | |
48 | 31 47 | bitrd | |
49 | 48 | bianabs | |
50 | 4 49 | biadanii | |