| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfull.b |
|
| 2 |
|
isfull.j |
|
| 3 |
|
fullfunc |
|
| 4 |
3
|
ssbri |
|
| 5 |
|
df-br |
|
| 6 |
|
funcrcl |
|
| 7 |
5 6
|
sylbi |
|
| 8 |
|
oveq12 |
|
| 9 |
8
|
breqd |
|
| 10 |
|
simpl |
|
| 11 |
10
|
fveq2d |
|
| 12 |
11 1
|
eqtr4di |
|
| 13 |
|
simpr |
|
| 14 |
13
|
fveq2d |
|
| 15 |
14 2
|
eqtr4di |
|
| 16 |
15
|
oveqd |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
12 17
|
raleqbidv |
|
| 19 |
12 18
|
raleqbidv |
|
| 20 |
9 19
|
anbi12d |
|
| 21 |
20
|
opabbidv |
|
| 22 |
|
df-full |
|
| 23 |
|
ovex |
|
| 24 |
|
simpl |
|
| 25 |
24
|
ssopab2i |
|
| 26 |
|
opabss |
|
| 27 |
25 26
|
sstri |
|
| 28 |
23 27
|
ssexi |
|
| 29 |
21 22 28
|
ovmpoa |
|
| 30 |
7 29
|
syl |
|
| 31 |
30
|
breqd |
|
| 32 |
|
relfunc |
|
| 33 |
32
|
brrelex12i |
|
| 34 |
|
breq12 |
|
| 35 |
|
simpr |
|
| 36 |
35
|
oveqd |
|
| 37 |
36
|
rneqd |
|
| 38 |
|
simpl |
|
| 39 |
38
|
fveq1d |
|
| 40 |
38
|
fveq1d |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
37 41
|
eqeq12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
34 43
|
anbi12d |
|
| 45 |
|
eqid |
|
| 46 |
44 45
|
brabga |
|
| 47 |
33 46
|
syl |
|
| 48 |
31 47
|
bitrd |
|
| 49 |
48
|
bianabs |
|
| 50 |
4 49
|
biadanii |
|