Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ishashinf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid | |
|
2 | ficardom | |
|
3 | 1 2 | syl | |
4 | isinf | |
|
5 | breq2 | |
|
6 | 5 | anbi2d | |
7 | 6 | exbidv | |
8 | 7 | rspcva | |
9 | 3 4 8 | syl2anr | |
10 | velpw | |
|
11 | 10 | biimpri | |
12 | 11 | a1i | |
13 | hasheni | |
|
14 | 13 | adantl | |
15 | hashcard | |
|
16 | 1 15 | syl | |
17 | nnnn0 | |
|
18 | hashfz1 | |
|
19 | 17 18 | syl | |
20 | 16 19 | eqtrd | |
21 | 20 | ad2antlr | |
22 | 14 21 | eqtrd | |
23 | 22 | ex | |
24 | 12 23 | anim12d | |
25 | 24 | eximdv | |
26 | 9 25 | mpd | |
27 | df-rex | |
|
28 | 26 27 | sylibr | |
29 | 28 | ralrimiva | |