Metamath Proof Explorer


Theorem ishashinf

Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Assertion ishashinf ¬AFinnx𝒫Ax=n

Proof

Step Hyp Ref Expression
1 fzfid n1nFin
2 ficardom 1nFincard1nω
3 1 2 syl ncard1nω
4 isinf ¬AFinaωxxAxa
5 breq2 a=card1nxaxcard1n
6 5 anbi2d a=card1nxAxaxAxcard1n
7 6 exbidv a=card1nxxAxaxxAxcard1n
8 7 rspcva card1nωaωxxAxaxxAxcard1n
9 3 4 8 syl2anr ¬AFinnxxAxcard1n
10 velpw x𝒫AxA
11 10 biimpri xAx𝒫A
12 11 a1i ¬AFinnxAx𝒫A
13 hasheni xcard1nx=card1n
14 13 adantl ¬AFinnxcard1nx=card1n
15 hashcard 1nFincard1n=1n
16 1 15 syl ncard1n=1n
17 nnnn0 nn0
18 hashfz1 n01n=n
19 17 18 syl n1n=n
20 16 19 eqtrd ncard1n=n
21 20 ad2antlr ¬AFinnxcard1ncard1n=n
22 14 21 eqtrd ¬AFinnxcard1nx=n
23 22 ex ¬AFinnxcard1nx=n
24 12 23 anim12d ¬AFinnxAxcard1nx𝒫Ax=n
25 24 eximdv ¬AFinnxxAxcard1nxx𝒫Ax=n
26 9 25 mpd ¬AFinnxx𝒫Ax=n
27 df-rex x𝒫Ax=nxx𝒫Ax=n
28 26 27 sylibr ¬AFinnx𝒫Ax=n
29 28 ralrimiva ¬AFinnx𝒫Ax=n