Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islinds3.b | |
|
islinds3.k | |
||
islinds3.x | |
||
islinds3.j | |
||
Assertion | islinds3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islinds3.b | |
|
2 | islinds3.k | |
|
3 | islinds3.x | |
|
4 | islinds3.j | |
|
5 | 1 | linds1 | |
6 | 5 | a1i | |
7 | eqid | |
|
8 | 7 | linds1 | |
9 | 3 1 | ressbasss | |
10 | 8 9 | sstrdi | |
11 | 10 | adantr | |
12 | 11 | a1i | |
13 | simpl | |
|
14 | eqid | |
|
15 | 1 14 2 | lspcl | |
16 | 1 2 | lspssid | |
17 | eqid | |
|
18 | 3 2 17 14 | lsslsp | |
19 | 13 15 16 18 | syl3anc | |
20 | 1 2 | lspssv | |
21 | 3 1 | ressbas2 | |
22 | 20 21 | syl | |
23 | 19 22 | eqtr3d | |
24 | 23 | biantrud | |
25 | 14 3 | lsslinds | |
26 | 13 15 16 25 | syl3anc | |
27 | 26 | bicomd | |
28 | 27 | anbi1d | |
29 | 24 28 | bitrd | |
30 | 29 | ex | |
31 | 6 12 30 | pm5.21ndd | |
32 | 7 4 17 | islbs4 | |
33 | 31 32 | bitr4di | |