Metamath Proof Explorer


Theorem islinindfis

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b B = Base M
islininds.z Z = 0 M
islininds.r R = Scalar M
islininds.e E = Base R
islininds.0 0 ˙ = 0 R
Assertion islinindfis S Fin M W S linIndS M S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙

Proof

Step Hyp Ref Expression
1 islininds.b B = Base M
2 islininds.z Z = 0 M
3 islininds.r R = Scalar M
4 islininds.e E = Base R
5 islininds.0 0 ˙ = 0 R
6 1 2 3 4 5 islininds S Fin M W S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
7 pm4.79 finSupp 0 ˙ f x S f x = 0 ˙ f linC M S = Z x S f x = 0 ˙ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
8 elmapi f E S f : S E
9 8 adantl S Fin M W f E S f : S E
10 simpll S Fin M W f E S S Fin
11 5 fvexi 0 ˙ V
12 11 a1i S Fin M W f E S 0 ˙ V
13 9 10 12 fdmfifsupp S Fin M W f E S finSupp 0 ˙ f
14 13 adantr S Fin M W f E S f linC M S = Z finSupp 0 ˙ f
15 14 imim1i finSupp 0 ˙ f x S f x = 0 ˙ S Fin M W f E S f linC M S = Z x S f x = 0 ˙
16 15 expd finSupp 0 ˙ f x S f x = 0 ˙ S Fin M W f E S f linC M S = Z x S f x = 0 ˙
17 ax-1 f linC M S = Z x S f x = 0 ˙ S Fin M W f E S f linC M S = Z x S f x = 0 ˙
18 16 17 jaoi finSupp 0 ˙ f x S f x = 0 ˙ f linC M S = Z x S f x = 0 ˙ S Fin M W f E S f linC M S = Z x S f x = 0 ˙
19 7 18 sylbir finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ S Fin M W f E S f linC M S = Z x S f x = 0 ˙
20 19 com12 S Fin M W f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f linC M S = Z x S f x = 0 ˙
21 pm3.42 f linC M S = Z x S f x = 0 ˙ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
22 20 21 impbid1 S Fin M W f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f linC M S = Z x S f x = 0 ˙
23 22 ralbidva S Fin M W f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S f linC M S = Z x S f x = 0 ˙
24 23 anbi2d S Fin M W S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙
25 6 24 bitrd S Fin M W S linIndS M S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙