Metamath Proof Explorer


Theorem ismaxidl

Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses ismaxidl.1 G=1stR
ismaxidl.2 X=ranG
Assertion ismaxidl RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X

Proof

Step Hyp Ref Expression
1 ismaxidl.1 G=1stR
2 ismaxidl.2 X=ranG
3 1 2 maxidlval RRingOpsMaxIdlR=iIdlR|iXjIdlRijj=ij=X
4 3 eleq2d RRingOpsMMaxIdlRMiIdlR|iXjIdlRijj=ij=X
5 neeq1 i=MiXMX
6 sseq1 i=MijMj
7 eqeq2 i=Mj=ij=M
8 7 orbi1d i=Mj=ij=Xj=Mj=X
9 6 8 imbi12d i=Mijj=ij=XMjj=Mj=X
10 9 ralbidv i=MjIdlRijj=ij=XjIdlRMjj=Mj=X
11 5 10 anbi12d i=MiXjIdlRijj=ij=XMXjIdlRMjj=Mj=X
12 11 elrab MiIdlR|iXjIdlRijj=ij=XMIdlRMXjIdlRMjj=Mj=X
13 3anass MIdlRMXjIdlRMjj=Mj=XMIdlRMXjIdlRMjj=Mj=X
14 12 13 bitr4i MiIdlR|iXjIdlRijj=ij=XMIdlRMXjIdlRMjj=Mj=X
15 4 14 bitrdi RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X