Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
ismaxidl
Next ⟩
maxidlidl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismaxidl
Description:
The predicate "is a maximal ideal".
(Contributed by
Jeff Madsen
, 5-Jan-2011)
Ref
Expression
Hypotheses
ismaxidl.1
⊢
G
=
1
st
⁡
R
ismaxidl.2
⊢
X
=
ran
⁡
G
Assertion
ismaxidl
⊢
R
∈
RingOps
→
M
∈
MaxIdl
⁡
R
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
Proof
Step
Hyp
Ref
Expression
1
ismaxidl.1
⊢
G
=
1
st
⁡
R
2
ismaxidl.2
⊢
X
=
ran
⁡
G
3
1
2
maxidlval
⊢
R
∈
RingOps
→
MaxIdl
⁡
R
=
i
∈
Idl
⁡
R
|
i
≠
X
∧
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
4
3
eleq2d
⊢
R
∈
RingOps
→
M
∈
MaxIdl
⁡
R
↔
M
∈
i
∈
Idl
⁡
R
|
i
≠
X
∧
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
5
neeq1
⊢
i
=
M
→
i
≠
X
↔
M
≠
X
6
sseq1
⊢
i
=
M
→
i
⊆
j
↔
M
⊆
j
7
eqeq2
⊢
i
=
M
→
j
=
i
↔
j
=
M
8
7
orbi1d
⊢
i
=
M
→
j
=
i
∨
j
=
X
↔
j
=
M
∨
j
=
X
9
6
8
imbi12d
⊢
i
=
M
→
i
⊆
j
→
j
=
i
∨
j
=
X
↔
M
⊆
j
→
j
=
M
∨
j
=
X
10
9
ralbidv
⊢
i
=
M
→
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
↔
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
11
5
10
anbi12d
⊢
i
=
M
→
i
≠
X
∧
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
↔
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
12
11
elrab
⊢
M
∈
i
∈
Idl
⁡
R
|
i
≠
X
∧
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
13
3anass
⊢
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
14
12
13
bitr4i
⊢
M
∈
i
∈
Idl
⁡
R
|
i
≠
X
∧
∀
j
∈
Idl
⁡
R
i
⊆
j
→
j
=
i
∨
j
=
X
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
15
4
14
bitrdi
⊢
R
∈
RingOps
→
M
∈
MaxIdl
⁡
R
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X