Metamath Proof Explorer


Theorem ismgmOLD

Description: Obsolete version of ismgm as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ismgmOLD.1 X=domdomG
Assertion ismgmOLD GAGMagmaG:X×XX

Proof

Step Hyp Ref Expression
1 ismgmOLD.1 X=domdomG
2 feq1 g=Gg:t×ttG:t×tt
3 2 exbidv g=Gtg:t×tttG:t×tt
4 df-mgmOLD Magma=g|tg:t×tt
5 3 4 elab2g GAGMagmatG:t×tt
6 f00 G:×G=×=
7 dmeq G=domG=dom
8 dmeq domG=domdomdomG=domdom
9 dm0 dom=
10 9 dmeqi domdom=dom
11 10 9 eqtri domdom=
12 8 11 eqtr2di domG=dom=domdomG
13 7 12 syl G==domdomG
14 13 adantr G=×==domdomG
15 6 14 sylbi G:×=domdomG
16 xpeq12 t=t=t×t=×
17 16 anidms t=t×t=×
18 feq23 t×t=×t=G:t×ttG:×
19 17 18 mpancom t=G:t×ttG:×
20 eqeq1 t=t=domdomG=domdomG
21 19 20 imbi12d t=G:t×ttt=domdomGG:×=domdomG
22 15 21 mpbiri t=G:t×ttt=domdomG
23 fdm G:t×ttdomG=t×t
24 dmeq domG=t×tdomdomG=domt×t
25 df-ne t¬t=
26 dmxp tdomt×t=t
27 25 26 sylbir ¬t=domt×t=t
28 27 eqeq1d ¬t=domt×t=domdomGt=domdomG
29 28 biimpcd domt×t=domdomG¬t=t=domdomG
30 29 eqcoms domdomG=domt×t¬t=t=domdomG
31 23 24 30 3syl G:t×tt¬t=t=domdomG
32 31 com12 ¬t=G:t×ttt=domdomG
33 22 32 pm2.61i G:t×ttt=domdomG
34 33 pm4.71ri G:t×ttt=domdomGG:t×tt
35 34 exbii tG:t×tttt=domdomGG:t×tt
36 5 35 bitrdi GAGMagmatt=domdomGG:t×tt
37 dmexg GAdomGV
38 dmexg domGVdomdomGV
39 xpeq12 t=domdomGt=domdomGt×t=domdomG×domdomG
40 39 anidms t=domdomGt×t=domdomG×domdomG
41 feq23 t×t=domdomG×domdomGt=domdomGG:t×ttG:domdomG×domdomGdomdomG
42 40 41 mpancom t=domdomGG:t×ttG:domdomG×domdomGdomdomG
43 1 eqcomi domdomG=X
44 43 43 xpeq12i domdomG×domdomG=X×X
45 44 43 feq23i G:domdomG×domdomGdomdomGG:X×XX
46 42 45 bitrdi t=domdomGG:t×ttG:X×XX
47 46 ceqsexgv domdomGVtt=domdomGG:t×ttG:X×XX
48 37 38 47 3syl GAtt=domdomGG:t×ttG:X×XX
49 36 48 bitrd GAGMagmaG:X×XX