Metamath Proof Explorer


Theorem isnacs2

Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F=mrClsC
Assertion isnacs2 CNoeACSXCACSXF𝒫XFin=C

Proof

Step Hyp Ref Expression
1 isnacs.f F=mrClsC
2 1 isnacs CNoeACSXCACSXsCg𝒫XFins=Fg
3 eqcom s=FgFg=s
4 3 rexbii g𝒫XFins=Fgg𝒫XFinFg=s
5 acsmre CACSXCMooreX
6 1 mrcf CMooreXF:𝒫XC
7 ffn F:𝒫XCFFn𝒫X
8 5 6 7 3syl CACSXFFn𝒫X
9 inss1 𝒫XFin𝒫X
10 fvelimab FFn𝒫X𝒫XFin𝒫XsF𝒫XFing𝒫XFinFg=s
11 8 9 10 sylancl CACSXsF𝒫XFing𝒫XFinFg=s
12 4 11 bitr4id CACSXg𝒫XFins=FgsF𝒫XFin
13 12 ralbidv CACSXsCg𝒫XFins=FgsCsF𝒫XFin
14 dfss3 CF𝒫XFinsCsF𝒫XFin
15 13 14 bitr4di CACSXsCg𝒫XFins=FgCF𝒫XFin
16 imassrn F𝒫XFinranF
17 frn F:𝒫XCranFC
18 5 6 17 3syl CACSXranFC
19 16 18 sstrid CACSXF𝒫XFinC
20 19 biantrurd CACSXCF𝒫XFinF𝒫XFinCCF𝒫XFin
21 eqss F𝒫XFin=CF𝒫XFinCCF𝒫XFin
22 20 21 bitr4di CACSXCF𝒫XFinF𝒫XFin=C
23 15 22 bitrd CACSXsCg𝒫XFins=FgF𝒫XFin=C
24 23 pm5.32i CACSXsCg𝒫XFins=FgCACSXF𝒫XFin=C
25 2 24 bitri CNoeACSXCACSXF𝒫XFin=C