| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrmtop |
|
| 2 |
|
nrmsep |
|
| 3 |
2
|
3exp2 |
|
| 4 |
3
|
impd |
|
| 5 |
4
|
ralrimivv |
|
| 6 |
1 5
|
jca |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr1 |
|
| 9 |
|
simpr2 |
|
| 10 |
|
sslin |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
12
|
opncld |
|
| 14 |
13
|
ad4ant13 |
|
| 15 |
|
simpr3 |
|
| 16 |
|
simpllr |
|
| 17 |
|
elssuni |
|
| 18 |
|
reldisj |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
15 19
|
mpbid |
|
| 21 |
12
|
clsss2 |
|
| 22 |
|
ssdifin0 |
|
| 23 |
21 22
|
syl |
|
| 24 |
14 20 23
|
syl2anc |
|
| 25 |
|
sseq0 |
|
| 26 |
11 24 25
|
syl2anc |
|
| 27 |
8 26
|
jca |
|
| 28 |
27
|
rexlimdva2 |
|
| 29 |
28
|
reximdva |
|
| 30 |
29
|
imim2d |
|
| 31 |
30
|
ralimdv |
|
| 32 |
31
|
ralimdv |
|
| 33 |
32
|
imp |
|
| 34 |
|
isnrm2 |
|
| 35 |
7 33 34
|
sylanbrc |
|
| 36 |
6 35
|
impbii |
|