Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomgr.v | |
|
isomgr.w | |
||
isomgr.i | |
||
isomgr.j | |
||
Assertion | isomgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgr.v | |
|
2 | isomgr.w | |
|
3 | isomgr.i | |
|
4 | isomgr.j | |
|
5 | eqidd | |
|
6 | fveq2 | |
|
7 | 6 | adantr | |
8 | 7 1 | eqtr4di | |
9 | fveq2 | |
|
10 | 9 | adantl | |
11 | 10 2 | eqtr4di | |
12 | 5 8 11 | f1oeq123d | |
13 | eqidd | |
|
14 | fveq2 | |
|
15 | 14 | adantr | |
16 | 15 3 | eqtr4di | |
17 | 16 | dmeqd | |
18 | fveq2 | |
|
19 | 18 | adantl | |
20 | 19 4 | eqtr4di | |
21 | 20 | dmeqd | |
22 | 13 17 21 | f1oeq123d | |
23 | 16 | fveq1d | |
24 | 23 | imaeq2d | |
25 | 20 | fveq1d | |
26 | 24 25 | eqeq12d | |
27 | 17 26 | raleqbidv | |
28 | 22 27 | anbi12d | |
29 | 28 | exbidv | |
30 | 12 29 | anbi12d | |
31 | 30 | exbidv | |
32 | df-isomgr | |
|
33 | 31 32 | brabga | |