Metamath Proof Explorer


Theorem isomgr

Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v V = Vtx A
isomgr.w W = Vtx B
isomgr.i I = iEdg A
isomgr.j J = iEdg B
Assertion isomgr A X B Y A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i

Proof

Step Hyp Ref Expression
1 isomgr.v V = Vtx A
2 isomgr.w W = Vtx B
3 isomgr.i I = iEdg A
4 isomgr.j J = iEdg B
5 eqidd x = A y = B f = f
6 fveq2 x = A Vtx x = Vtx A
7 6 adantr x = A y = B Vtx x = Vtx A
8 7 1 eqtr4di x = A y = B Vtx x = V
9 fveq2 y = B Vtx y = Vtx B
10 9 adantl x = A y = B Vtx y = Vtx B
11 10 2 eqtr4di x = A y = B Vtx y = W
12 5 8 11 f1oeq123d x = A y = B f : Vtx x 1-1 onto Vtx y f : V 1-1 onto W
13 eqidd x = A y = B g = g
14 fveq2 x = A iEdg x = iEdg A
15 14 adantr x = A y = B iEdg x = iEdg A
16 15 3 eqtr4di x = A y = B iEdg x = I
17 16 dmeqd x = A y = B dom iEdg x = dom I
18 fveq2 y = B iEdg y = iEdg B
19 18 adantl x = A y = B iEdg y = iEdg B
20 19 4 eqtr4di x = A y = B iEdg y = J
21 20 dmeqd x = A y = B dom iEdg y = dom J
22 13 17 21 f1oeq123d x = A y = B g : dom iEdg x 1-1 onto dom iEdg y g : dom I 1-1 onto dom J
23 16 fveq1d x = A y = B iEdg x i = I i
24 23 imaeq2d x = A y = B f iEdg x i = f I i
25 20 fveq1d x = A y = B iEdg y g i = J g i
26 24 25 eqeq12d x = A y = B f iEdg x i = iEdg y g i f I i = J g i
27 17 26 raleqbidv x = A y = B i dom iEdg x f iEdg x i = iEdg y g i i dom I f I i = J g i
28 22 27 anbi12d x = A y = B g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i g : dom I 1-1 onto dom J i dom I f I i = J g i
29 28 exbidv x = A y = B g g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i g g : dom I 1-1 onto dom J i dom I f I i = J g i
30 12 29 anbi12d x = A y = B f : Vtx x 1-1 onto Vtx y g g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
31 30 exbidv x = A y = B f f : Vtx x 1-1 onto Vtx y g g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
32 df-isomgr IsomGr = x y | f f : Vtx x 1-1 onto Vtx y g g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i
33 31 32 brabga A X B Y A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i