Metamath Proof Explorer


Theorem isomgr

Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v V=VtxA
isomgr.w W=VtxB
isomgr.i I=iEdgA
isomgr.j J=iEdgB
Assertion isomgr AXBYAIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi

Proof

Step Hyp Ref Expression
1 isomgr.v V=VtxA
2 isomgr.w W=VtxB
3 isomgr.i I=iEdgA
4 isomgr.j J=iEdgB
5 eqidd x=Ay=Bf=f
6 fveq2 x=AVtxx=VtxA
7 6 adantr x=Ay=BVtxx=VtxA
8 7 1 eqtr4di x=Ay=BVtxx=V
9 fveq2 y=BVtxy=VtxB
10 9 adantl x=Ay=BVtxy=VtxB
11 10 2 eqtr4di x=Ay=BVtxy=W
12 5 8 11 f1oeq123d x=Ay=Bf:Vtxx1-1 ontoVtxyf:V1-1 ontoW
13 eqidd x=Ay=Bg=g
14 fveq2 x=AiEdgx=iEdgA
15 14 adantr x=Ay=BiEdgx=iEdgA
16 15 3 eqtr4di x=Ay=BiEdgx=I
17 16 dmeqd x=Ay=BdomiEdgx=domI
18 fveq2 y=BiEdgy=iEdgB
19 18 adantl x=Ay=BiEdgy=iEdgB
20 19 4 eqtr4di x=Ay=BiEdgy=J
21 20 dmeqd x=Ay=BdomiEdgy=domJ
22 13 17 21 f1oeq123d x=Ay=Bg:domiEdgx1-1 ontodomiEdgyg:domI1-1 ontodomJ
23 16 fveq1d x=Ay=BiEdgxi=Ii
24 23 imaeq2d x=Ay=BfiEdgxi=fIi
25 20 fveq1d x=Ay=BiEdgygi=Jgi
26 24 25 eqeq12d x=Ay=BfiEdgxi=iEdgygifIi=Jgi
27 17 26 raleqbidv x=Ay=BidomiEdgxfiEdgxi=iEdgygiidomIfIi=Jgi
28 22 27 anbi12d x=Ay=Bg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygig:domI1-1 ontodomJidomIfIi=Jgi
29 28 exbidv x=Ay=Bgg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygigg:domI1-1 ontodomJidomIfIi=Jgi
30 12 29 anbi12d x=Ay=Bf:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygif:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi
31 30 exbidv x=Ay=Bff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygiff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi
32 df-isomgr IsomGr=xy|ff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
33 31 32 brabga AXBYAIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi