Metamath Proof Explorer


Theorem isphg

Description: The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is G , the scalar product is S , and the norm is N . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis isphg.1 X=ranG
Assertion isphg GASBNCGSNCPreHilOLDGSNNrmCVecxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2

Proof

Step Hyp Ref Expression
1 isphg.1 X=ranG
2 df-ph CPreHilOLD=NrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2
3 2 elin2 GSNCPreHilOLDGSNNrmCVecGSNgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2
4 rneq g=Grang=ranG
5 4 1 eqtr4di g=Grang=X
6 oveq g=Gxgy=xGy
7 6 fveq2d g=Gnxgy=nxGy
8 7 oveq1d g=Gnxgy2=nxGy2
9 oveq g=Gxg-1sy=xG-1sy
10 9 fveq2d g=Gnxg-1sy=nxG-1sy
11 10 oveq1d g=Gnxg-1sy2=nxG-1sy2
12 8 11 oveq12d g=Gnxgy2+nxg-1sy2=nxGy2+nxG-1sy2
13 12 eqeq1d g=Gnxgy2+nxg-1sy2=2nx2+ny2nxGy2+nxG-1sy2=2nx2+ny2
14 5 13 raleqbidv g=Gyrangnxgy2+nxg-1sy2=2nx2+ny2yXnxGy2+nxG-1sy2=2nx2+ny2
15 5 14 raleqbidv g=Gxrangyrangnxgy2+nxg-1sy2=2nx2+ny2xXyXnxGy2+nxG-1sy2=2nx2+ny2
16 oveq s=S-1sy=-1Sy
17 16 oveq2d s=SxG-1sy=xG-1Sy
18 17 fveq2d s=SnxG-1sy=nxG-1Sy
19 18 oveq1d s=SnxG-1sy2=nxG-1Sy2
20 19 oveq2d s=SnxGy2+nxG-1sy2=nxGy2+nxG-1Sy2
21 20 eqeq1d s=SnxGy2+nxG-1sy2=2nx2+ny2nxGy2+nxG-1Sy2=2nx2+ny2
22 21 2ralbidv s=SxXyXnxGy2+nxG-1sy2=2nx2+ny2xXyXnxGy2+nxG-1Sy2=2nx2+ny2
23 fveq1 n=NnxGy=NxGy
24 23 oveq1d n=NnxGy2=NxGy2
25 fveq1 n=NnxG-1Sy=NxG-1Sy
26 25 oveq1d n=NnxG-1Sy2=NxG-1Sy2
27 24 26 oveq12d n=NnxGy2+nxG-1Sy2=NxGy2+NxG-1Sy2
28 fveq1 n=Nnx=Nx
29 28 oveq1d n=Nnx2=Nx2
30 fveq1 n=Nny=Ny
31 30 oveq1d n=Nny2=Ny2
32 29 31 oveq12d n=Nnx2+ny2=Nx2+Ny2
33 32 oveq2d n=N2nx2+ny2=2Nx2+Ny2
34 27 33 eqeq12d n=NnxGy2+nxG-1Sy2=2nx2+ny2NxGy2+NxG-1Sy2=2Nx2+Ny2
35 34 2ralbidv n=NxXyXnxGy2+nxG-1Sy2=2nx2+ny2xXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
36 15 22 35 eloprabg GASBNCGSNgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2xXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
37 36 anbi2d GASBNCGSNNrmCVecGSNgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2GSNNrmCVecxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2
38 3 37 bitrid GASBNCGSNCPreHilOLDGSNNrmCVecxXyXNxGy2+NxG-1Sy2=2Nx2+Ny2