| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmapsubcl.b |  | 
						
							| 2 |  | pmapsubcl.m |  | 
						
							| 3 |  | pmapsubcl.c |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 4 5 3 | ispsubclN |  | 
						
							| 7 |  | hlop |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | hlclat |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 4 5 | polssatN |  | 
						
							| 12 | 1 4 | atssbase |  | 
						
							| 13 | 11 12 | sstrdi |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 14 | clatlubcl |  | 
						
							| 16 | 10 13 15 | syl2anc |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 17 | opoccl |  | 
						
							| 19 | 8 16 18 | syl2anc |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 | 20 | adantrd |  | 
						
							| 22 | 14 17 4 2 5 | polval2N |  | 
						
							| 23 | 11 22 | syldan |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 |  | eqeq1 |  | 
						
							| 26 | 25 | biimpcd |  | 
						
							| 27 | 24 26 | syl6 |  | 
						
							| 28 | 27 | impd |  | 
						
							| 29 | 21 28 | jcad |  | 
						
							| 30 |  | fveq2 |  | 
						
							| 31 | 30 | rspceeqv |  | 
						
							| 32 | 29 31 | syl6 |  | 
						
							| 33 | 1 4 2 | pmapssat |  | 
						
							| 34 | 1 2 5 | 2polpmapN |  | 
						
							| 35 |  | sseq1 |  | 
						
							| 36 |  | 2fveq3 |  | 
						
							| 37 |  | id |  | 
						
							| 38 | 36 37 | eqeq12d |  | 
						
							| 39 | 35 38 | anbi12d |  | 
						
							| 40 | 39 | biimprcd |  | 
						
							| 41 | 33 34 40 | syl2anc |  | 
						
							| 42 | 41 | rexlimdva |  | 
						
							| 43 | 32 42 | impbid |  | 
						
							| 44 | 6 43 | bitrd |  |