Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrnghm.b | |
|
isrnghm.t | |
||
isrnghm.m | |
||
Assertion | isrnghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghm.b | |
|
2 | isrnghm.t | |
|
3 | isrnghm.m | |
|
4 | rnghmrcl | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 1 2 3 5 6 7 | rnghmval | |
9 | 8 | eleq2d | |
10 | fveq1 | |
|
11 | fveq1 | |
|
12 | fveq1 | |
|
13 | 11 12 | oveq12d | |
14 | 10 13 | eqeq12d | |
15 | fveq1 | |
|
16 | 11 12 | oveq12d | |
17 | 15 16 | eqeq12d | |
18 | 14 17 | anbi12d | |
19 | 18 | 2ralbidv | |
20 | 19 | elrab | |
21 | r19.26-2 | |
|
22 | 21 | anbi2i | |
23 | anass | |
|
24 | 22 23 | bitr4i | |
25 | 1 5 6 7 | isghm | |
26 | fvex | |
|
27 | 1 | fvexi | |
28 | 26 27 | pm3.2i | |
29 | elmapg | |
|
30 | 28 29 | mp1i | |
31 | 30 | anbi1d | |
32 | rngabl | |
|
33 | ablgrp | |
|
34 | 32 33 | syl | |
35 | rngabl | |
|
36 | ablgrp | |
|
37 | 35 36 | syl | |
38 | ibar | |
|
39 | 34 37 38 | syl2an | |
40 | 31 39 | bitr2d | |
41 | 25 40 | bitr2id | |
42 | 41 | anbi1d | |
43 | 24 42 | bitrid | |
44 | 20 43 | bitrid | |
45 | 9 44 | bitrd | |
46 | 4 45 | biadanii | |