Metamath Proof Explorer


Theorem isrnghm

Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020)

Ref Expression
Hypotheses isrnghm.b B=BaseR
isrnghm.t ·˙=R
isrnghm.m ˙=S
Assertion isrnghm FRRngHomoSRRngSRngFRGrpHomSxByBFx·˙y=Fx˙Fy

Proof

Step Hyp Ref Expression
1 isrnghm.b B=BaseR
2 isrnghm.t ·˙=R
3 isrnghm.m ˙=S
4 rnghmrcl FRRngHomoSRRngSRng
5 eqid BaseS=BaseS
6 eqid +R=+R
7 eqid +S=+S
8 1 2 3 5 6 7 rnghmval RRngSRngRRngHomoS=fBaseSB|xByBfx+Ry=fx+Sfyfx·˙y=fx˙fy
9 8 eleq2d RRngSRngFRRngHomoSFfBaseSB|xByBfx+Ry=fx+Sfyfx·˙y=fx˙fy
10 fveq1 f=Ffx+Ry=Fx+Ry
11 fveq1 f=Ffx=Fx
12 fveq1 f=Ffy=Fy
13 11 12 oveq12d f=Ffx+Sfy=Fx+SFy
14 10 13 eqeq12d f=Ffx+Ry=fx+SfyFx+Ry=Fx+SFy
15 fveq1 f=Ffx·˙y=Fx·˙y
16 11 12 oveq12d f=Ffx˙fy=Fx˙Fy
17 15 16 eqeq12d f=Ffx·˙y=fx˙fyFx·˙y=Fx˙Fy
18 14 17 anbi12d f=Ffx+Ry=fx+Sfyfx·˙y=fx˙fyFx+Ry=Fx+SFyFx·˙y=Fx˙Fy
19 18 2ralbidv f=FxByBfx+Ry=fx+Sfyfx·˙y=fx˙fyxByBFx+Ry=Fx+SFyFx·˙y=Fx˙Fy
20 19 elrab FfBaseSB|xByBfx+Ry=fx+Sfyfx·˙y=fx˙fyFBaseSBxByBFx+Ry=Fx+SFyFx·˙y=Fx˙Fy
21 r19.26-2 xByBFx+Ry=Fx+SFyFx·˙y=Fx˙FyxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙Fy
22 21 anbi2i FBaseSBxByBFx+Ry=Fx+SFyFx·˙y=Fx˙FyFBaseSBxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙Fy
23 anass FBaseSBxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙FyFBaseSBxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙Fy
24 22 23 bitr4i FBaseSBxByBFx+Ry=Fx+SFyFx·˙y=Fx˙FyFBaseSBxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙Fy
25 1 5 6 7 isghm FRGrpHomSRGrpSGrpF:BBaseSxByBFx+Ry=Fx+SFy
26 fvex BaseSV
27 1 fvexi BV
28 26 27 pm3.2i BaseSVBV
29 elmapg BaseSVBVFBaseSBF:BBaseS
30 28 29 mp1i RRngSRngFBaseSBF:BBaseS
31 30 anbi1d RRngSRngFBaseSBxByBFx+Ry=Fx+SFyF:BBaseSxByBFx+Ry=Fx+SFy
32 rngabl RRngRAbel
33 ablgrp RAbelRGrp
34 32 33 syl RRngRGrp
35 rngabl SRngSAbel
36 ablgrp SAbelSGrp
37 35 36 syl SRngSGrp
38 ibar RGrpSGrpF:BBaseSxByBFx+Ry=Fx+SFyRGrpSGrpF:BBaseSxByBFx+Ry=Fx+SFy
39 34 37 38 syl2an RRngSRngF:BBaseSxByBFx+Ry=Fx+SFyRGrpSGrpF:BBaseSxByBFx+Ry=Fx+SFy
40 31 39 bitr2d RRngSRngRGrpSGrpF:BBaseSxByBFx+Ry=Fx+SFyFBaseSBxByBFx+Ry=Fx+SFy
41 25 40 bitr2id RRngSRngFBaseSBxByBFx+Ry=Fx+SFyFRGrpHomS
42 41 anbi1d RRngSRngFBaseSBxByBFx+Ry=Fx+SFyxByBFx·˙y=Fx˙FyFRGrpHomSxByBFx·˙y=Fx˙Fy
43 24 42 bitrid RRngSRngFBaseSBxByBFx+Ry=Fx+SFyFx·˙y=Fx˙FyFRGrpHomSxByBFx·˙y=Fx˙Fy
44 20 43 bitrid RRngSRngFfBaseSB|xByBfx+Ry=fx+Sfyfx·˙y=fx˙fyFRGrpHomSxByBFx·˙y=Fx˙Fy
45 9 44 bitrd RRngSRngFRRngHomoSFRGrpHomSxByBFx·˙y=Fx˙Fy
46 4 45 biadanii FRRngHomoSRRngSRngFRGrpHomSxByBFx·˙y=Fx˙Fy