Metamath Proof Explorer


Theorem isrrvv

Description: Elementhood to the set of real-valued random variables with respect to the probability P . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypothesis isrrvv.1 φ P Prob
Assertion isrrvv φ X RndVar P X : dom P y 𝔅 X -1 y dom P

Proof

Step Hyp Ref Expression
1 isrrvv.1 φ P Prob
2 1 rrvmbfm φ X RndVar P X dom P MblFn μ 𝔅
3 domprobsiga P Prob dom P ran sigAlgebra
4 1 3 syl φ dom P ran sigAlgebra
5 brsigarn 𝔅 sigAlgebra
6 elrnsiga 𝔅 sigAlgebra 𝔅 ran sigAlgebra
7 5 6 mp1i φ 𝔅 ran sigAlgebra
8 4 7 ismbfm φ X dom P MblFn μ 𝔅 X 𝔅 dom P y 𝔅 X -1 y dom P
9 unibrsiga 𝔅 =
10 9 oveq1i 𝔅 dom P = dom P
11 10 eleq2i X 𝔅 dom P X dom P
12 reex V
13 4 uniexd φ dom P V
14 elmapg V dom P V X dom P X : dom P
15 12 13 14 sylancr φ X dom P X : dom P
16 11 15 syl5bb φ X 𝔅 dom P X : dom P
17 16 anbi1d φ X 𝔅 dom P y 𝔅 X -1 y dom P X : dom P y 𝔅 X -1 y dom P
18 2 8 17 3bitrd φ X RndVar P X : dom P y 𝔅 X -1 y dom P