Metamath Proof Explorer


Theorem issply

Description: Conditions for being a symmetric polynomial. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses issply.s S = SymGrp I
issply.p P = Base S
issply.m M = Base I mPoly R
issply.d D = h 0 I | finSupp 0 h
issply.i φ I V
issply.r φ R W
issply.f φ F M
issply.1 φ p P x D F x p = F x
Assertion issply Could not format assertion : No typesetting found for |- ( ph -> F e. ( I SymPoly R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 issply.s S = SymGrp I
2 issply.p P = Base S
3 issply.m M = Base I mPoly R
4 issply.d D = h 0 I | finSupp 0 h
5 issply.i φ I V
6 issply.r φ R W
7 issply.f φ F M
8 issply.1 φ p P x D F x p = F x
9 8 mpteq2dva φ p P x D F x p = x D F x
10 coeq2 c = d y c = y d
11 10 fveq2d c = d e y c = e y d
12 11 mpteq2dv c = d y h 0 I | finSupp 0 h e y c = y h 0 I | finSupp 0 h e y d
13 fveq1 e = f e y d = f y d
14 13 mpteq2dv e = f y h 0 I | finSupp 0 h e y d = y h 0 I | finSupp 0 h f y d
15 12 14 cbvmpov c P , e M y h 0 I | finSupp 0 h e y c = d P , f M y h 0 I | finSupp 0 h f y d
16 coeq1 y = x y d = x d
17 16 fveq2d y = x f y d = f x d
18 17 cbvmptv y h 0 I | finSupp 0 h f y d = x h 0 I | finSupp 0 h f x d
19 18 a1i d P f M y h 0 I | finSupp 0 h f y d = x h 0 I | finSupp 0 h f x d
20 19 mpoeq3ia d P , f M y h 0 I | finSupp 0 h f y d = d P , f M x h 0 I | finSupp 0 h f x d
21 15 20 eqtri c P , e M y h 0 I | finSupp 0 h e y c = d P , f M x h 0 I | finSupp 0 h f x d
22 21 a1i φ p P c P , e M y h 0 I | finSupp 0 h e y c = d P , f M x h 0 I | finSupp 0 h f x d
23 4 eqcomi h 0 I | finSupp 0 h = D
24 23 a1i d = p f = F h 0 I | finSupp 0 h = D
25 simpr d = p f = F f = F
26 coeq2 d = p x d = x p
27 26 adantr d = p f = F x d = x p
28 25 27 fveq12d d = p f = F f x d = F x p
29 24 28 mpteq12dv d = p f = F x h 0 I | finSupp 0 h f x d = x D F x p
30 29 adantl φ p P d = p f = F x h 0 I | finSupp 0 h f x d = x D F x p
31 simpr φ p P p P
32 7 adantr φ p P F M
33 ovex 0 I V
34 4 33 rabex2 D V
35 34 a1i φ p P D V
36 35 mptexd φ p P x D F x p V
37 22 30 31 32 36 ovmpod φ p P p c P , e M y h 0 I | finSupp 0 h e y c F = x D F x p
38 eqid I mPoly R = I mPoly R
39 eqid Base R = Base R
40 4 psrbasfsupp D = h 0 I | h -1 Fin
41 38 39 3 40 32 mplelf φ p P F : D Base R
42 41 feqmptd φ p P F = x D F x
43 9 37 42 3eqtr4d φ p P p c P , e M y h 0 I | finSupp 0 h e y c F = F
44 43 ralrimiva φ p P p c P , e M y h 0 I | finSupp 0 h e y c F = F
45 1 2 3 21 5 mplvrpmga φ c P , e M y h 0 I | finSupp 0 h e y c S GrpAct M
46 2 45 7 isfxp Could not format ( ph -> ( F e. ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) <-> A. p e. P ( p ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) F ) = F ) ) : No typesetting found for |- ( ph -> ( F e. ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) <-> A. p e. P ( p ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) F ) = F ) ) with typecode |-
47 44 46 mpbird Could not format ( ph -> F e. ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) ) : No typesetting found for |- ( ph -> F e. ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) ) with typecode |-
48 1 2 3 21 5 6 splyval Could not format ( ph -> ( I SymPoly R ) = ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( I SymPoly R ) = ( M FixPts ( c e. P , e e. M |-> ( y e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( e ` ( y o. c ) ) ) ) ) ) with typecode |-
49 47 48 eleqtrrd Could not format ( ph -> F e. ( I SymPoly R ) ) : No typesetting found for |- ( ph -> F e. ( I SymPoly R ) ) with typecode |-