| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issstrmgm.b |
|
| 2 |
|
issstrmgm.p |
|
| 3 |
|
issstrmgm.h |
|
| 4 |
|
simplr |
|
| 5 |
|
simplr |
|
| 6 |
3 1
|
ressbas2 |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
eleq2d |
|
| 9 |
8
|
biimpcd |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
impcom |
|
| 12 |
7
|
eleq2d |
|
| 13 |
12
|
biimpcd |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
impcom |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
16 17
|
mgmcl |
|
| 19 |
4 11 15 18
|
syl3anc |
|
| 20 |
1
|
fvexi |
|
| 21 |
20
|
ssex |
|
| 22 |
21
|
adantl |
|
| 23 |
3 2
|
ressplusg |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
oveqdr |
|
| 27 |
7
|
adantr |
|
| 28 |
19 26 27
|
3eltr4d |
|
| 29 |
28
|
ralrimivva |
|
| 30 |
6
|
adantl |
|
| 31 |
24
|
oveqd |
|
| 32 |
31 30
|
eleq12d |
|
| 33 |
30 32
|
raleqbidv |
|
| 34 |
30 33
|
raleqbidv |
|
| 35 |
34
|
biimpa |
|
| 36 |
16 17
|
ismgm |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
35 37
|
mpbird |
|
| 39 |
29 38
|
impbida |
|