Metamath Proof Explorer


Theorem issubmgm

Description: Expand definition of a submagma. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses issubmgm.b B=BaseM
issubmgm.p +˙=+M
Assertion issubmgm MMgmSSubMgmMSBxSySx+˙yS

Proof

Step Hyp Ref Expression
1 issubmgm.b B=BaseM
2 issubmgm.p +˙=+M
3 fveq2 m=MBasem=BaseM
4 3 pweqd m=M𝒫Basem=𝒫BaseM
5 fveq2 m=M+m=+M
6 5 oveqd m=Mx+my=x+My
7 6 eleq1d m=Mx+mytx+Myt
8 7 2ralbidv m=Mxtytx+mytxtytx+Myt
9 4 8 rabeqbidv m=Mt𝒫Basem|xtytx+myt=t𝒫BaseM|xtytx+Myt
10 df-submgm SubMgm=mMgmt𝒫Basem|xtytx+myt
11 fvex BaseMV
12 11 pwex 𝒫BaseMV
13 12 rabex t𝒫BaseM|xtytx+MytV
14 9 10 13 fvmpt MMgmSubMgmM=t𝒫BaseM|xtytx+Myt
15 14 eleq2d MMgmSSubMgmMSt𝒫BaseM|xtytx+Myt
16 11 elpw2 S𝒫BaseMSBaseM
17 16 anbi1i S𝒫BaseMxSySx+MySSBaseMxSySx+MyS
18 eleq2 t=Sx+Mytx+MyS
19 18 raleqbi1dv t=Sytx+MytySx+MyS
20 19 raleqbi1dv t=Sxtytx+MytxSySx+MyS
21 20 elrab St𝒫BaseM|xtytx+MytS𝒫BaseMxSySx+MyS
22 1 sseq2i SBSBaseM
23 2 oveqi x+˙y=x+My
24 23 eleq1i x+˙ySx+MyS
25 24 2ralbii xSySx+˙ySxSySx+MyS
26 22 25 anbi12i SBxSySx+˙ySSBaseMxSySx+MyS
27 17 21 26 3bitr4i St𝒫BaseM|xtytx+MytSBxSySx+˙yS
28 15 27 bitrdi MMgmSSubMgmMSBxSySx+˙yS