| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itcovalpc.f |  | 
						
							| 2 |  | nn0ex |  | 
						
							| 3 | 2 | mptex |  | 
						
							| 4 | 1 3 | eqeltri |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 |  | itcovalsucov |  | 
						
							| 8 | 4 5 6 7 | mp3an2ani |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 |  | simplr |  | 
						
							| 11 | 5 | adantr |  | 
						
							| 12 | 10 11 | nn0mulcld |  | 
						
							| 13 | 9 12 | nn0addcld |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | cbvmptv |  | 
						
							| 17 | 1 16 | eqtri |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | oveq1 |  | 
						
							| 20 | 13 14 18 19 | fmptco |  | 
						
							| 21 | 9 | nn0cnd |  | 
						
							| 22 | 12 | nn0cnd |  | 
						
							| 23 | 10 | nn0cnd |  | 
						
							| 24 | 21 22 23 | addassd |  | 
						
							| 25 |  | nn0cn |  | 
						
							| 26 | 25 | mulridd |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 27 | eqcomd |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 30 | nn0cnd |  | 
						
							| 32 | 5 | nn0cnd |  | 
						
							| 33 |  | 1cnd |  | 
						
							| 34 | 31 32 33 | adddid |  | 
						
							| 35 | 29 34 | eqtr4d |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 24 37 | eqtrd |  | 
						
							| 39 | 38 | mpteq2dva |  | 
						
							| 40 | 20 39 | eqtrd |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 8 41 | eqtrd |  | 
						
							| 43 | 42 | ex |  |