Metamath Proof Explorer


Theorem itg1le

Description: If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itg1le Fdom1Gdom1FfG1F1G

Proof

Step Hyp Ref Expression
1 simp1 Fdom1Gdom1FfGFdom1
2 0ss
3 2 a1i Fdom1Gdom1FfG
4 ovol0 vol*=0
5 4 a1i Fdom1Gdom1FfGvol*=0
6 simp2 Fdom1Gdom1FfGGdom1
7 simpl Fdom1Gdom1Fdom1
8 i1ff Fdom1F:
9 ffn F:FFn
10 7 8 9 3syl Fdom1Gdom1FFn
11 simpr Fdom1Gdom1Gdom1
12 i1ff Gdom1G:
13 ffn G:GFn
14 11 12 13 3syl Fdom1Gdom1GFn
15 reex V
16 15 a1i Fdom1Gdom1V
17 inidm =
18 eqidd Fdom1Gdom1xFx=Fx
19 eqidd Fdom1Gdom1xGx=Gx
20 10 14 16 16 17 18 19 ofrval Fdom1Gdom1FfGxFxGx
21 20 3exp Fdom1Gdom1FfGxFxGx
22 21 3impia Fdom1Gdom1FfGxFxGx
23 eldifi xx
24 22 23 impel Fdom1Gdom1FfGxFxGx
25 1 3 5 6 24 itg1lea Fdom1Gdom1FfG1F1G