Metamath Proof Explorer


Theorem itg1val

Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion itg1val Fdom11F=xranF0xvolF-1x

Proof

Step Hyp Ref Expression
1 rneq f=Franf=ranF
2 1 difeq1d f=Franf0=ranF0
3 cnveq f=Ff-1=F-1
4 3 imaeq1d f=Ff-1x=F-1x
5 4 fveq2d f=Fvolf-1x=volF-1x
6 5 oveq2d f=Fxvolf-1x=xvolF-1x
7 6 adantr f=Fxranf0xvolf-1x=xvolF-1x
8 2 7 sumeq12dv f=Fxranf0xvolf-1x=xranF0xvolF-1x
9 df-itg1 1=fgMblFn|g:rangFinvolg-10xranf0xvolf-1x
10 sumex xranF0xvolF-1xV
11 8 9 10 fvmpt FgMblFn|g:rangFinvolg-101F=xranF0xvolF-1x
12 sumex xranf0xvolf-1xV
13 12 9 dmmpti dom1=gMblFn|g:rangFinvolg-10
14 11 13 eleq2s Fdom11F=xranF0xvolF-1x