Metamath Proof Explorer


Theorem itg2ge0

Description: The integral of a nonnegative real function is greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2ge0 F:0+∞02F

Proof

Step Hyp Ref Expression
1 itg10 1×0=0
2 ffvelcdm F:0+∞yFy0+∞
3 0xr 0*
4 pnfxr +∞*
5 elicc1 0*+∞*Fy0+∞Fy*0FyFy+∞
6 3 4 5 mp2an Fy0+∞Fy*0FyFy+∞
7 6 simp2bi Fy0+∞0Fy
8 2 7 syl F:0+∞y0Fy
9 8 ralrimiva F:0+∞y0Fy
10 0re 0
11 fnconstg 0×0Fn
12 10 11 mp1i F:0+∞×0Fn
13 ffn F:0+∞FFn
14 reex V
15 14 a1i F:0+∞V
16 inidm =
17 c0ex 0V
18 17 fvconst2 y×0y=0
19 18 adantl F:0+∞y×0y=0
20 eqidd F:0+∞yFy=Fy
21 12 13 15 15 16 19 20 ofrfval F:0+∞×0fFy0Fy
22 9 21 mpbird F:0+∞×0fF
23 i1f0 ×0dom1
24 itg2ub F:0+∞×0dom1×0fF1×02F
25 23 24 mp3an2 F:0+∞×0fF1×02F
26 22 25 mpdan F:0+∞1×02F
27 1 26 eqbrtrrid F:0+∞02F