Metamath Proof Explorer


Theorem itg2itg1

Description: The integral of a nonnegative simple function using S.2 is the same as its value under S.1 . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2itg1 F dom 1 0 𝑝 f F 2 F = 1 F

Proof

Step Hyp Ref Expression
1 i1ff F dom 1 F :
2 xrge0f F : 0 𝑝 f F F : 0 +∞
3 1 2 sylan F dom 1 0 𝑝 f F F : 0 +∞
4 itg2cl F : 0 +∞ 2 F *
5 3 4 syl F dom 1 0 𝑝 f F 2 F *
6 itg1cl F dom 1 1 F
7 6 adantr F dom 1 0 𝑝 f F 1 F
8 7 rexrd F dom 1 0 𝑝 f F 1 F *
9 itg1le g dom 1 F dom 1 g f F 1 g 1 F
10 9 3expia g dom 1 F dom 1 g f F 1 g 1 F
11 10 ancoms F dom 1 g dom 1 g f F 1 g 1 F
12 11 ralrimiva F dom 1 g dom 1 g f F 1 g 1 F
13 12 adantr F dom 1 0 𝑝 f F g dom 1 g f F 1 g 1 F
14 itg2leub F : 0 +∞ 1 F * 2 F 1 F g dom 1 g f F 1 g 1 F
15 3 8 14 syl2anc F dom 1 0 𝑝 f F 2 F 1 F g dom 1 g f F 1 g 1 F
16 13 15 mpbird F dom 1 0 𝑝 f F 2 F 1 F
17 simpl F dom 1 0 𝑝 f F F dom 1
18 reex V
19 18 a1i F dom 1 V
20 leid x x x
21 20 adantl F dom 1 x x x
22 19 1 21 caofref F dom 1 F f F
23 22 adantr F dom 1 0 𝑝 f F F f F
24 itg2ub F : 0 +∞ F dom 1 F f F 1 F 2 F
25 3 17 23 24 syl3anc F dom 1 0 𝑝 f F 1 F 2 F
26 5 8 16 25 xrletrid F dom 1 0 𝑝 f F 2 F = 1 F