Metamath Proof Explorer


Theorem itg2itg1

Description: The integral of a nonnegative simple function using S.2 is the same as its value under S.1 . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2itg1 Fdom10𝑝fF2F=1F

Proof

Step Hyp Ref Expression
1 i1ff Fdom1F:
2 xrge0f F:0𝑝fFF:0+∞
3 1 2 sylan Fdom10𝑝fFF:0+∞
4 itg2cl F:0+∞2F*
5 3 4 syl Fdom10𝑝fF2F*
6 itg1cl Fdom11F
7 6 adantr Fdom10𝑝fF1F
8 7 rexrd Fdom10𝑝fF1F*
9 itg1le gdom1Fdom1gfF1g1F
10 9 3expia gdom1Fdom1gfF1g1F
11 10 ancoms Fdom1gdom1gfF1g1F
12 11 ralrimiva Fdom1gdom1gfF1g1F
13 12 adantr Fdom10𝑝fFgdom1gfF1g1F
14 itg2leub F:0+∞1F*2F1Fgdom1gfF1g1F
15 3 8 14 syl2anc Fdom10𝑝fF2F1Fgdom1gfF1g1F
16 13 15 mpbird Fdom10𝑝fF2F1F
17 simpl Fdom10𝑝fFFdom1
18 reex V
19 18 a1i Fdom1V
20 leid xxx
21 20 adantl Fdom1xxx
22 19 1 21 caofref Fdom1FfF
23 22 adantr Fdom10𝑝fFFfF
24 itg2ub F:0+∞Fdom1FfF1F2F
25 3 17 23 24 syl3anc Fdom10𝑝fF1F2F
26 5 8 16 25 xrletrid Fdom10𝑝fF2F=1F