Metamath Proof Explorer


Theorem itg2ub

Description: The integral of a nonnegative real function F is an upper bound on the integrals of all simple functions G dominated by F . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2ub F:0+∞Gdom1GfF1G2F

Proof

Step Hyp Ref Expression
1 eqid x|gdom1gfFx=1g=x|gdom1gfFx=1g
2 1 itg2lcl x|gdom1gfFx=1g*
3 1 itg2lr Gdom1GfF1Gx|gdom1gfFx=1g
4 3 3adant1 F:0+∞Gdom1GfF1Gx|gdom1gfFx=1g
5 supxrub x|gdom1gfFx=1g*1Gx|gdom1gfFx=1g1Gsupx|gdom1gfFx=1g*<
6 2 4 5 sylancr F:0+∞Gdom1GfF1Gsupx|gdom1gfFx=1g*<
7 1 itg2val F:0+∞2F=supx|gdom1gfFx=1g*<
8 7 3ad2ant1 F:0+∞Gdom1GfF2F=supx|gdom1gfFx=1g*<
9 6 8 breqtrrd F:0+∞Gdom1GfF1G2F