| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
dfitg |
|
| 3 |
|
ax-icn |
|
| 4 |
|
elfznn0 |
|
| 5 |
|
expcl |
|
| 6 |
3 4 5
|
sylancr |
|
| 7 |
|
ine0 |
|
| 8 |
|
elfzelz |
|
| 9 |
|
expne0i |
|
| 10 |
3 7 8 9
|
mp3an12i |
|
| 11 |
6 10
|
div0d |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
re0 |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
14
|
ifeq1d |
|
| 16 |
|
ifid |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
17
|
mpteq2dv |
|
| 19 |
|
fconstmpt |
|
| 20 |
18 19
|
eqtr4di |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
itg20 |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
23
|
oveq2d |
|
| 25 |
6
|
mul01d |
|
| 26 |
24 25
|
eqtrd |
|
| 27 |
26
|
sumeq2i |
|
| 28 |
|
fzfi |
|
| 29 |
28
|
olci |
|
| 30 |
|
sumz |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
2 27 31
|
3eqtri |
|