Metamath Proof Explorer


Theorem itgz

Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion itgz A0dx=0

Proof

Step Hyp Ref Expression
1 eqid 0ik=0ik
2 1 dfitg A0dx=k=03ik2xifxA00ik0ik0
3 ax-icn i
4 elfznn0 k03k0
5 expcl ik0ik
6 3 4 5 sylancr k03ik
7 ine0 i0
8 elfzelz k03k
9 expne0i ii0kik0
10 3 7 8 9 mp3an12i k03ik0
11 6 10 div0d k030ik=0
12 11 fveq2d k030ik=0
13 re0 0=0
14 12 13 eqtrdi k030ik=0
15 14 ifeq1d k03ifxA00ik0ik0=ifxA00ik00
16 ifid ifxA00ik00=0
17 15 16 eqtrdi k03ifxA00ik0ik0=0
18 17 mpteq2dv k03xifxA00ik0ik0=x0
19 fconstmpt ×0=x0
20 18 19 eqtr4di k03xifxA00ik0ik0=×0
21 20 fveq2d k032xifxA00ik0ik0=2×0
22 itg20 2×0=0
23 21 22 eqtrdi k032xifxA00ik0ik0=0
24 23 oveq2d k03ik2xifxA00ik0ik0=ik0
25 6 mul01d k03ik0=0
26 24 25 eqtrd k03ik2xifxA00ik0ik0=0
27 26 sumeq2i k=03ik2xifxA00ik0ik0=k=030
28 fzfi 03Fin
29 28 olci 03003Fin
30 sumz 03003Fink=030=0
31 29 30 ax-mp k=030=0
32 2 27 31 3eqtri A0dx=0