Metamath Proof Explorer


Theorem itsclquadeu

Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 23-Feb-2023)

Ref Expression
Hypotheses itsclquadb.q Q=A2+B2
itsclquadb.t T=2BC
itsclquadb.u U=C2A2R2
Assertion itsclquadeu AA0BCR+Y∃!xx2+Y2=R2Ax+BY=CQY2+TY+U=0

Proof

Step Hyp Ref Expression
1 itsclquadb.q Q=A2+B2
2 itsclquadb.t T=2BC
3 itsclquadb.u U=C2A2R2
4 oveq1 x=zx2=z2
5 4 oveq1d x=zx2+Y2=z2+Y2
6 5 eqeq1d x=zx2+Y2=R2z2+Y2=R2
7 oveq2 x=zAx=Az
8 7 oveq1d x=zAx+BY=Az+BY
9 8 eqeq1d x=zAx+BY=CAz+BY=C
10 6 9 anbi12d x=zx2+Y2=R2Ax+BY=Cz2+Y2=R2Az+BY=C
11 10 reu8 ∃!xx2+Y2=R2Ax+BY=Cxx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=z
12 11 a1i AA0BCR+Y∃!xx2+Y2=R2Ax+BY=Cxx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=z
13 id C=Ax+BYC=Ax+BY
14 13 eqcoms Ax+BY=CC=Ax+BY
15 14 eqeq2d Ax+BY=CAz+BY=CAz+BY=Ax+BY
16 15 adantl AA0BCR+YxzAx+BY=CAz+BY=CAz+BY=Ax+BY
17 simp11l AA0BCR+YA
18 17 ad2antrr AA0BCR+YxzA
19 simpr AA0BCR+Yxzz
20 18 19 remulcld AA0BCR+YxzAz
21 20 recnd AA0BCR+YxzAz
22 17 adantr AA0BCR+YxA
23 simpr AA0BCR+Yxx
24 22 23 remulcld AA0BCR+YxAx
25 24 adantr AA0BCR+YxzAx
26 25 recnd AA0BCR+YxzAx
27 simp12 AA0BCR+YB
28 simp3 AA0BCR+YY
29 27 28 remulcld AA0BCR+YBY
30 29 ad2antrr AA0BCR+YxzBY
31 30 recnd AA0BCR+YxzBY
32 21 26 31 addcan2d AA0BCR+YxzAz+BY=Ax+BYAz=Ax
33 19 recnd AA0BCR+Yxzz
34 simplr AA0BCR+Yxzx
35 34 recnd AA0BCR+Yxzx
36 18 recnd AA0BCR+YxzA
37 simp11r AA0BCR+YA0
38 37 ad2antrr AA0BCR+YxzA0
39 33 35 36 38 mulcand AA0BCR+YxzAz=Axz=x
40 equcom z=xx=z
41 40 a1i AA0BCR+Yxzz=xx=z
42 32 39 41 3bitrd AA0BCR+YxzAz+BY=Ax+BYx=z
43 42 biimpd AA0BCR+YxzAz+BY=Ax+BYx=z
44 43 adantr AA0BCR+YxzAx+BY=CAz+BY=Ax+BYx=z
45 16 44 sylbid AA0BCR+YxzAx+BY=CAz+BY=Cx=z
46 45 an32s AA0BCR+YxAx+BY=CzAz+BY=Cx=z
47 46 adantld AA0BCR+YxAx+BY=Czz2+Y2=R2Az+BY=Cx=z
48 47 ralrimiva AA0BCR+YxAx+BY=Czz2+Y2=R2Az+BY=Cx=z
49 48 ex AA0BCR+YxAx+BY=Czz2+Y2=R2Az+BY=Cx=z
50 49 adantld AA0BCR+Yxx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=z
51 50 pm4.71d AA0BCR+Yxx2+Y2=R2Ax+BY=Cx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=z
52 51 bicomd AA0BCR+Yxx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=zx2+Y2=R2Ax+BY=C
53 52 rexbidva AA0BCR+Yxx2+Y2=R2Ax+BY=Czz2+Y2=R2Az+BY=Cx=zxx2+Y2=R2Ax+BY=C
54 1 2 3 itsclquadb AA0BCR+Yxx2+Y2=R2Ax+BY=CQY2+TY+U=0
55 12 53 54 3bitrd AA0BCR+Y∃!xx2+Y2=R2Ax+BY=CQY2+TY+U=0