Metamath Proof Explorer


Theorem itunisuc

Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion itunisuc UAsucB=UAB

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 frsuc BωrecyVyAωsucB=yVyrecyVyAωB
3 fvex recyVyAωBV
4 unieq a=recyVyAωBa=recyVyAωB
5 unieq y=ay=a
6 5 cbvmptv yVy=aVa
7 3 uniex recyVyAωBV
8 4 6 7 fvmpt recyVyAωBVyVyrecyVyAωB=recyVyAωB
9 3 8 ax-mp yVyrecyVyAωB=recyVyAωB
10 2 9 eqtrdi BωrecyVyAωsucB=recyVyAωB
11 10 adantl AVBωrecyVyAωsucB=recyVyAωB
12 1 itunifval AVUA=recyVyAω
13 12 fveq1d AVUAsucB=recyVyAωsucB
14 13 adantr AVBωUAsucB=recyVyAωsucB
15 12 fveq1d AVUAB=recyVyAωB
16 15 adantr AVBωUAB=recyVyAωB
17 16 unieqd AVBωUAB=recyVyAωB
18 11 14 17 3eqtr4d AVBωUAsucB=UAB
19 uni0 =
20 19 eqcomi =
21 1 itunifn AVUAFnω
22 21 fndmd AVdomUA=ω
23 22 eleq2d AVsucBdomUAsucBω
24 peano2b BωsucBω
25 23 24 bitr4di AVsucBdomUABω
26 25 notbid AV¬sucBdomUA¬Bω
27 26 biimpar AV¬Bω¬sucBdomUA
28 ndmfv ¬sucBdomUAUAsucB=
29 27 28 syl AV¬BωUAsucB=
30 22 eleq2d AVBdomUABω
31 30 notbid AV¬BdomUA¬Bω
32 31 biimpar AV¬Bω¬BdomUA
33 ndmfv ¬BdomUAUAB=
34 32 33 syl AV¬BωUAB=
35 34 unieqd AV¬BωUAB=
36 20 29 35 3eqtr4a AV¬BωUAsucB=UAB
37 18 36 pm2.61dan AVUAsucB=UAB
38 0fv B=
39 38 unieqi B=
40 0fv sucB=
41 19 39 40 3eqtr4ri sucB=B
42 fvprc ¬AVUA=
43 42 fveq1d ¬AVUAsucB=sucB
44 42 fveq1d ¬AVUAB=B
45 44 unieqd ¬AVUAB=B
46 41 43 45 3eqtr4a ¬AVUAsucB=UAB
47 37 46 pm2.61i UAsucB=UAB