| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunconn.2 |
|
| 2 |
|
iunconn.3 |
|
| 3 |
|
iunconn.4 |
|
| 4 |
|
iunconn.5 |
|
| 5 |
|
iunconn.6 |
|
| 6 |
|
iunconn.7 |
|
| 7 |
|
iunconn.8 |
|
| 8 |
|
iunconn.9 |
|
| 9 |
|
iunconn.10 |
|
| 10 |
|
iunconn.11 |
|
| 11 |
|
n0 |
|
| 12 |
7 11
|
sylib |
|
| 13 |
|
elin |
|
| 14 |
|
eliun |
|
| 15 |
|
nfv |
|
| 16 |
10 15
|
nfan |
|
| 17 |
|
nfv |
|
| 18 |
4
|
adantr |
|
| 19 |
1
|
ad2antrr |
|
| 20 |
2
|
adantr |
|
| 21 |
5
|
ad2antrr |
|
| 22 |
6
|
ad2antrr |
|
| 23 |
|
simprr |
|
| 24 |
3
|
adantr |
|
| 25 |
|
inelcm |
|
| 26 |
23 24 25
|
syl2anc |
|
| 27 |
|
inelcm |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
8
|
ad2antrr |
|
| 30 |
|
ssiun2 |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
31
|
sscond |
|
| 33 |
29 32
|
sstrd |
|
| 34 |
|
inss1 |
|
| 35 |
|
toponss |
|
| 36 |
19 21 35
|
syl2anc |
|
| 37 |
34 36
|
sstrid |
|
| 38 |
|
reldisj |
|
| 39 |
37 38
|
syl |
|
| 40 |
33 39
|
mpbird |
|
| 41 |
9
|
ad2antrr |
|
| 42 |
31 41
|
sstrd |
|
| 43 |
19 20 21 22 26 28 40 42
|
nconnsubb |
|
| 44 |
43
|
expr |
|
| 45 |
18 44
|
mt2d |
|
| 46 |
45
|
an4s |
|
| 47 |
46
|
exp32 |
|
| 48 |
16 17 47
|
rexlimd |
|
| 49 |
14 48
|
biimtrid |
|
| 50 |
49
|
expimpd |
|
| 51 |
13 50
|
biimtrid |
|
| 52 |
51
|
exlimdv |
|
| 53 |
12 52
|
mpd |
|