Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunmapsn.x | |
|
iunmapsn.a | |
||
iunmapsn.b | |
||
iunmapsn.c | |
||
Assertion | iunmapsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunmapsn.x | |
|
2 | iunmapsn.a | |
|
3 | iunmapsn.b | |
|
4 | iunmapsn.c | |
|
5 | 1 2 3 | iunmapss | |
6 | simpr | |
|
7 | 3 | ex | |
8 | 1 7 | ralrimi | |
9 | iunexg | |
|
10 | 2 8 9 | syl2anc | |
11 | 10 4 | mapsnd | |
12 | 11 | adantr | |
13 | 6 12 | eleqtrd | |
14 | abid | |
|
15 | 13 14 | sylib | |
16 | eliun | |
|
17 | 16 | biimpi | |
18 | 17 | 3ad2ant2 | |
19 | nfcv | |
|
20 | nfiu1 | |
|
21 | 19 20 | nfel | |
22 | nfv | |
|
23 | 1 21 22 | nf3an | |
24 | rspe | |
|
25 | 24 | ancoms | |
26 | abid | |
|
27 | 25 26 | sylibr | |
28 | 27 | adantll | |
29 | 28 | 3adant2 | |
30 | 4 | adantr | |
31 | 3 30 | mapsnd | |
32 | 31 | eqcomd | |
33 | 32 | 3adant3 | |
34 | 33 | 3adant1r | |
35 | 29 34 | eleqtrd | |
36 | 35 | 3exp | |
37 | 36 | 3adant2 | |
38 | 23 37 | reximdai | |
39 | 18 38 | mpd | |
40 | 39 | 3exp | |
41 | 40 | rexlimdv | |
42 | 41 | adantr | |
43 | 15 42 | mpd | |
44 | eliun | |
|
45 | 43 44 | sylibr | |
46 | 5 45 | eqelssd | |