Metamath Proof Explorer


Theorem iunmapsn

Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses iunmapsn.x xφ
iunmapsn.a φAV
iunmapsn.b φxABW
iunmapsn.c φCZ
Assertion iunmapsn φxABC=xABC

Proof

Step Hyp Ref Expression
1 iunmapsn.x xφ
2 iunmapsn.a φAV
3 iunmapsn.b φxABW
4 iunmapsn.c φCZ
5 1 2 3 iunmapss φxABCxABC
6 simpr φfxABCfxABC
7 3 ex φxABW
8 1 7 ralrimi φxABW
9 iunexg AVxABWxABV
10 2 8 9 syl2anc φxABV
11 10 4 mapsnd φxABC=f|yxABf=Cy
12 11 adantr φfxABCxABC=f|yxABf=Cy
13 6 12 eleqtrd φfxABCff|yxABf=Cy
14 abid ff|yxABf=CyyxABf=Cy
15 13 14 sylib φfxABCyxABf=Cy
16 eliun yxABxAyB
17 16 biimpi yxABxAyB
18 17 3ad2ant2 φyxABf=CyxAyB
19 nfcv _xy
20 nfiu1 _xxAB
21 19 20 nfel xyxAB
22 nfv xf=Cy
23 1 21 22 nf3an xφyxABf=Cy
24 rspe yBf=CyyBf=Cy
25 24 ancoms f=CyyByBf=Cy
26 abid ff|yBf=CyyBf=Cy
27 25 26 sylibr f=CyyBff|yBf=Cy
28 27 adantll φf=CyyBff|yBf=Cy
29 28 3adant2 φf=CyxAyBff|yBf=Cy
30 4 adantr φxACZ
31 3 30 mapsnd φxABC=f|yBf=Cy
32 31 eqcomd φxAf|yBf=Cy=BC
33 32 3adant3 φxAyBf|yBf=Cy=BC
34 33 3adant1r φf=CyxAyBf|yBf=Cy=BC
35 29 34 eleqtrd φf=CyxAyBfBC
36 35 3exp φf=CyxAyBfBC
37 36 3adant2 φyxABf=CyxAyBfBC
38 23 37 reximdai φyxABf=CyxAyBxAfBC
39 18 38 mpd φyxABf=CyxAfBC
40 39 3exp φyxABf=CyxAfBC
41 40 rexlimdv φyxABf=CyxAfBC
42 41 adantr φfxABCyxABf=CyxAfBC
43 15 42 mpd φfxABCxAfBC
44 eliun fxABCxAfBC
45 43 44 sylibr φfxABCfxABC
46 5 45 eqelssd φxABC=xABC