Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
1
|
oveq2d |
|
3 |
2
|
oveq2d |
|
4 |
3
|
breq2d |
|
5 |
4
|
bibi2d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq2d |
|
9 |
8
|
oveq2d |
|
10 |
9
|
breq2d |
|
11 |
10
|
bibi2d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq1 |
|
14 |
13
|
oveq2d |
|
15 |
14
|
oveq2d |
|
16 |
15
|
breq2d |
|
17 |
16
|
bibi2d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq2d |
|
21 |
20
|
oveq2d |
|
22 |
21
|
breq2d |
|
23 |
22
|
bibi2d |
|
24 |
23
|
imbi2d |
|
25 |
|
zcn |
|
26 |
25
|
ad2antrl |
|
27 |
26
|
mul02d |
|
28 |
27
|
oveq2d |
|
29 |
|
zcn |
|
30 |
29
|
ad2antll |
|
31 |
30
|
addid1d |
|
32 |
28 31
|
eqtr2d |
|
33 |
32
|
oveq2d |
|
34 |
33
|
breq2d |
|
35 |
|
simp3 |
|
36 |
|
simprl |
|
37 |
|
simprrl |
|
38 |
|
simprrr |
|
39 |
|
nn0z |
|
40 |
39
|
adantr |
|
41 |
40 37
|
zmulcld |
|
42 |
38 41
|
zaddcld |
|
43 |
|
jm2.19lem2 |
|
44 |
36 37 42 43
|
syl3anc |
|
45 |
38
|
zcnd |
|
46 |
41
|
zcnd |
|
47 |
37
|
zcnd |
|
48 |
45 46 47
|
addassd |
|
49 |
|
nn0cn |
|
50 |
49
|
adantr |
|
51 |
|
1cnd |
|
52 |
50 51 47
|
adddird |
|
53 |
47
|
mulid2d |
|
54 |
53
|
oveq2d |
|
55 |
52 54
|
eqtr2d |
|
56 |
55
|
oveq2d |
|
57 |
48 56
|
eqtrd |
|
58 |
57
|
oveq2d |
|
59 |
58
|
breq2d |
|
60 |
44 59
|
bitrd |
|
61 |
60
|
3adant3 |
|
62 |
35 61
|
bitrd |
|
63 |
62
|
3exp |
|
64 |
63
|
a2d |
|
65 |
6 12 18 24 34 64
|
nn0ind |
|
66 |
65
|
com12 |
|
67 |
66
|
3impia |
|