Metamath Proof Explorer


Theorem konigsberglem1

Description: Lemma 1 for konigsberg : Vertex 0 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 4-Mar-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsberglem1 VtxDegG0=3

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 ovex 03V
5 s6cli ⟨“010203121223”⟩WordV
6 5 elexi ⟨“010203121223”⟩V
7 4 6 opvtxfvi Vtx03⟨“010203121223”⟩=03
8 7 eqcomi 03=Vtx03⟨“010203121223”⟩
9 3nn0 30
10 0elfz 30003
11 9 10 ax-mp 003
12 4 6 opiedgfvi iEdg03⟨“010203121223”⟩=⟨“010203121223”⟩
13 12 eqcomi ⟨“010203121223”⟩=iEdg03⟨“010203121223”⟩
14 s1cli ⟨“23”⟩WordV
15 df-s7 ⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩
16 eqid 03=03
17 eqid ⟨“01020312122323”⟩=⟨“01020312122323”⟩
18 eqid 03⟨“01020312122323”⟩=03⟨“01020312122323”⟩
19 16 17 18 konigsbergssiedgw ⟨“010203121223”⟩WordV⟨“23”⟩WordV⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩⟨“010203121223”⟩Wordx𝒫03|x2
20 5 14 15 19 mp3an ⟨“010203121223”⟩Wordx𝒫03|x2
21 s5cli ⟨“0102031212”⟩WordV
22 21 elexi ⟨“0102031212”⟩V
23 4 22 opvtxfvi Vtx03⟨“0102031212”⟩=03
24 23 eqcomi 03=Vtx03⟨“0102031212”⟩
25 4 22 opiedgfvi iEdg03⟨“0102031212”⟩=⟨“0102031212”⟩
26 25 eqcomi ⟨“0102031212”⟩=iEdg03⟨“0102031212”⟩
27 s2cli ⟨“2323”⟩WordV
28 s5s2 ⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩
29 16 17 18 konigsbergssiedgw ⟨“0102031212”⟩WordV⟨“2323”⟩WordV⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩⟨“0102031212”⟩Wordx𝒫03|x2
30 21 27 28 29 mp3an ⟨“0102031212”⟩Wordx𝒫03|x2
31 s4cli ⟨“01020312”⟩WordV
32 31 elexi ⟨“01020312”⟩V
33 4 32 opvtxfvi Vtx03⟨“01020312”⟩=03
34 33 eqcomi 03=Vtx03⟨“01020312”⟩
35 4 32 opiedgfvi iEdg03⟨“01020312”⟩=⟨“01020312”⟩
36 35 eqcomi ⟨“01020312”⟩=iEdg03⟨“01020312”⟩
37 s3cli ⟨“122323”⟩WordV
38 s4s3 ⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩
39 16 17 18 konigsbergssiedgw ⟨“01020312”⟩WordV⟨“122323”⟩WordV⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩⟨“01020312”⟩Wordx𝒫03|x2
40 31 37 38 39 mp3an ⟨“01020312”⟩Wordx𝒫03|x2
41 s3cli ⟨“010203”⟩WordV
42 41 elexi ⟨“010203”⟩V
43 4 42 opvtxfvi Vtx03⟨“010203”⟩=03
44 43 eqcomi 03=Vtx03⟨“010203”⟩
45 4 42 opiedgfvi iEdg03⟨“010203”⟩=⟨“010203”⟩
46 45 eqcomi ⟨“010203”⟩=iEdg03⟨“010203”⟩
47 s4cli ⟨“12122323”⟩WordV
48 s3s4 ⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩
49 16 17 18 konigsbergssiedgw ⟨“010203”⟩WordV⟨“12122323”⟩WordV⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩⟨“010203”⟩Wordx𝒫03|x2
50 41 47 48 49 mp3an ⟨“010203”⟩Wordx𝒫03|x2
51 s2cli ⟨“0102”⟩WordV
52 51 elexi ⟨“0102”⟩V
53 4 52 opvtxfvi Vtx03⟨“0102”⟩=03
54 53 eqcomi 03=Vtx03⟨“0102”⟩
55 4 52 opiedgfvi iEdg03⟨“0102”⟩=⟨“0102”⟩
56 55 eqcomi ⟨“0102”⟩=iEdg03⟨“0102”⟩
57 s5cli ⟨“0312122323”⟩WordV
58 s2s5 ⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩
59 16 17 18 konigsbergssiedgw ⟨“0102”⟩WordV⟨“0312122323”⟩WordV⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩⟨“0102”⟩Wordx𝒫03|x2
60 51 57 58 59 mp3an ⟨“0102”⟩Wordx𝒫03|x2
61 s1cli ⟨“01”⟩WordV
62 61 elexi ⟨“01”⟩V
63 4 62 opvtxfvi Vtx03⟨“01”⟩=03
64 63 eqcomi 03=Vtx03⟨“01”⟩
65 4 62 opiedgfvi iEdg03⟨“01”⟩=⟨“01”⟩
66 65 eqcomi ⟨“01”⟩=iEdg03⟨“01”⟩
67 s6cli ⟨“020312122323”⟩WordV
68 s1s6 ⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩
69 16 17 18 konigsbergssiedgw ⟨“01”⟩WordV⟨“020312122323”⟩WordV⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩⟨“01”⟩Wordx𝒫03|x2
70 61 67 68 69 mp3an ⟨“01”⟩Wordx𝒫03|x2
71 0ex V
72 4 71 opvtxfvi Vtx03=03
73 72 eqcomi 03=Vtx03
74 4 71 opiedgfvi iEdg03=
75 74 eqcomi =iEdg03
76 wrd0 Wordx𝒫03|x2
77 eqid =
78 73 75 vtxdg0e 003=VtxDeg030=0
79 11 77 78 mp2an VtxDeg030=0
80 1nn0 10
81 1le3 13
82 elfz2nn0 103103013
83 80 9 81 82 mpbir3an 103
84 ax-1ne0 10
85 s0s1 ⟨“01”⟩=++⟨“01”⟩
86 65 85 eqtri iEdg03⟨“01”⟩=++⟨“01”⟩
87 73 11 75 76 79 63 83 84 86 vdegp1bi VtxDeg03⟨“01”⟩0=0+1
88 0p1e1 0+1=1
89 87 88 eqtri VtxDeg03⟨“01”⟩0=1
90 2nn0 20
91 2re 2
92 3re 3
93 2lt3 2<3
94 91 92 93 ltleii 23
95 elfz2nn0 203203023
96 90 9 94 95 mpbir3an 203
97 2ne0 20
98 df-s2 ⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
99 55 98 eqtri iEdg03⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
100 64 11 66 70 89 53 96 97 99 vdegp1bi VtxDeg03⟨“0102”⟩0=1+1
101 1p1e2 1+1=2
102 100 101 eqtri VtxDeg03⟨“0102”⟩0=2
103 nn0fz0 30303
104 9 103 mpbi 303
105 3ne0 30
106 df-s3 ⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
107 45 106 eqtri iEdg03⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
108 54 11 56 60 102 43 104 105 107 vdegp1bi VtxDeg03⟨“010203”⟩0=2+1
109 2p1e3 2+1=3
110 108 109 eqtri VtxDeg03⟨“010203”⟩0=3
111 df-s4 ⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
112 35 111 eqtri iEdg03⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
113 44 11 46 50 110 33 83 84 96 97 112 vdegp1ai VtxDeg03⟨“01020312”⟩0=3
114 df-s5 ⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
115 25 114 eqtri iEdg03⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
116 34 11 36 40 113 23 83 84 96 97 115 vdegp1ai VtxDeg03⟨“0102031212”⟩0=3
117 df-s6 ⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
118 12 117 eqtri iEdg03⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
119 24 11 26 30 116 7 96 97 104 105 118 vdegp1ai VtxDeg03⟨“010203121223”⟩0=3
120 1 2 3 konigsbergvtx VtxG=03
121 1 2 3 konigsbergiedg iEdgG=⟨“01020312122323”⟩
122 121 15 eqtri iEdgG=⟨“010203121223”⟩++⟨“23”⟩
123 8 11 13 20 119 120 96 97 104 105 122 vdegp1ai VtxDegG0=3