Metamath Proof Explorer


Theorem konigsberglem3

Description: Lemma 3 for konigsberg : Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 4-Mar-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsberglem3 VtxDegG3=3

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 ovex 03V
5 s6cli ⟨“010203121223”⟩WordV
6 5 elexi ⟨“010203121223”⟩V
7 4 6 opvtxfvi Vtx03⟨“010203121223”⟩=03
8 7 eqcomi 03=Vtx03⟨“010203121223”⟩
9 3nn0 30
10 nn0fz0 30303
11 9 10 mpbi 303
12 4 6 opiedgfvi iEdg03⟨“010203121223”⟩=⟨“010203121223”⟩
13 12 eqcomi ⟨“010203121223”⟩=iEdg03⟨“010203121223”⟩
14 s1cli ⟨“23”⟩WordV
15 df-s7 ⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩
16 eqid 03=03
17 eqid ⟨“01020312122323”⟩=⟨“01020312122323”⟩
18 eqid 03⟨“01020312122323”⟩=03⟨“01020312122323”⟩
19 16 17 18 konigsbergssiedgw ⟨“010203121223”⟩WordV⟨“23”⟩WordV⟨“01020312122323”⟩=⟨“010203121223”⟩++⟨“23”⟩⟨“010203121223”⟩Wordx𝒫03|x2
20 5 14 15 19 mp3an ⟨“010203121223”⟩Wordx𝒫03|x2
21 s5cli ⟨“0102031212”⟩WordV
22 21 elexi ⟨“0102031212”⟩V
23 4 22 opvtxfvi Vtx03⟨“0102031212”⟩=03
24 23 eqcomi 03=Vtx03⟨“0102031212”⟩
25 4 22 opiedgfvi iEdg03⟨“0102031212”⟩=⟨“0102031212”⟩
26 25 eqcomi ⟨“0102031212”⟩=iEdg03⟨“0102031212”⟩
27 s2cli ⟨“2323”⟩WordV
28 s5s2 ⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩
29 16 17 18 konigsbergssiedgw ⟨“0102031212”⟩WordV⟨“2323”⟩WordV⟨“01020312122323”⟩=⟨“0102031212”⟩++⟨“2323”⟩⟨“0102031212”⟩Wordx𝒫03|x2
30 21 27 28 29 mp3an ⟨“0102031212”⟩Wordx𝒫03|x2
31 s4cli ⟨“01020312”⟩WordV
32 31 elexi ⟨“01020312”⟩V
33 4 32 opvtxfvi Vtx03⟨“01020312”⟩=03
34 33 eqcomi 03=Vtx03⟨“01020312”⟩
35 4 32 opiedgfvi iEdg03⟨“01020312”⟩=⟨“01020312”⟩
36 35 eqcomi ⟨“01020312”⟩=iEdg03⟨“01020312”⟩
37 s3cli ⟨“122323”⟩WordV
38 s4s3 ⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩
39 16 17 18 konigsbergssiedgw ⟨“01020312”⟩WordV⟨“122323”⟩WordV⟨“01020312122323”⟩=⟨“01020312”⟩++⟨“122323”⟩⟨“01020312”⟩Wordx𝒫03|x2
40 31 37 38 39 mp3an ⟨“01020312”⟩Wordx𝒫03|x2
41 s3cli ⟨“010203”⟩WordV
42 41 elexi ⟨“010203”⟩V
43 4 42 opvtxfvi Vtx03⟨“010203”⟩=03
44 43 eqcomi 03=Vtx03⟨“010203”⟩
45 4 42 opiedgfvi iEdg03⟨“010203”⟩=⟨“010203”⟩
46 45 eqcomi ⟨“010203”⟩=iEdg03⟨“010203”⟩
47 s4cli ⟨“12122323”⟩WordV
48 s3s4 ⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩
49 16 17 18 konigsbergssiedgw ⟨“010203”⟩WordV⟨“12122323”⟩WordV⟨“01020312122323”⟩=⟨“010203”⟩++⟨“12122323”⟩⟨“010203”⟩Wordx𝒫03|x2
50 41 47 48 49 mp3an ⟨“010203”⟩Wordx𝒫03|x2
51 s2cli ⟨“0102”⟩WordV
52 51 elexi ⟨“0102”⟩V
53 4 52 opvtxfvi Vtx03⟨“0102”⟩=03
54 53 eqcomi 03=Vtx03⟨“0102”⟩
55 4 52 opiedgfvi iEdg03⟨“0102”⟩=⟨“0102”⟩
56 55 eqcomi ⟨“0102”⟩=iEdg03⟨“0102”⟩
57 s5cli ⟨“0312122323”⟩WordV
58 s2s5 ⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩
59 16 17 18 konigsbergssiedgw ⟨“0102”⟩WordV⟨“0312122323”⟩WordV⟨“01020312122323”⟩=⟨“0102”⟩++⟨“0312122323”⟩⟨“0102”⟩Wordx𝒫03|x2
60 51 57 58 59 mp3an ⟨“0102”⟩Wordx𝒫03|x2
61 s1cli ⟨“01”⟩WordV
62 61 elexi ⟨“01”⟩V
63 4 62 opvtxfvi Vtx03⟨“01”⟩=03
64 63 eqcomi 03=Vtx03⟨“01”⟩
65 4 62 opiedgfvi iEdg03⟨“01”⟩=⟨“01”⟩
66 65 eqcomi ⟨“01”⟩=iEdg03⟨“01”⟩
67 s6cli ⟨“020312122323”⟩WordV
68 s1s6 ⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩
69 16 17 18 konigsbergssiedgw ⟨“01”⟩WordV⟨“020312122323”⟩WordV⟨“01020312122323”⟩=⟨“01”⟩++⟨“020312122323”⟩⟨“01”⟩Wordx𝒫03|x2
70 61 67 68 69 mp3an ⟨“01”⟩Wordx𝒫03|x2
71 0ex V
72 4 71 opvtxfvi Vtx03=03
73 72 eqcomi 03=Vtx03
74 4 71 opiedgfvi iEdg03=
75 74 eqcomi =iEdg03
76 wrd0 Wordx𝒫03|x2
77 eqid =
78 73 75 vtxdg0e 303=VtxDeg033=0
79 11 77 78 mp2an VtxDeg033=0
80 0elfz 30003
81 9 80 ax-mp 003
82 3ne0 30
83 82 necomi 03
84 1nn0 10
85 1le3 13
86 elfz2nn0 103103013
87 84 9 85 86 mpbir3an 103
88 1re 1
89 1lt3 1<3
90 88 89 ltneii 13
91 s0s1 ⟨“01”⟩=++⟨“01”⟩
92 65 91 eqtri iEdg03⟨“01”⟩=++⟨“01”⟩
93 73 11 75 76 79 63 81 83 87 90 92 vdegp1ai VtxDeg03⟨“01”⟩3=0
94 2nn0 20
95 2re 2
96 3re 3
97 2lt3 2<3
98 95 96 97 ltleii 23
99 elfz2nn0 203203023
100 94 9 98 99 mpbir3an 203
101 95 97 ltneii 23
102 df-s2 ⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
103 55 102 eqtri iEdg03⟨“0102”⟩=⟨“01”⟩++⟨“02”⟩
104 64 11 66 70 93 53 81 83 100 101 103 vdegp1ai VtxDeg03⟨“0102”⟩3=0
105 df-s3 ⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
106 45 105 eqtri iEdg03⟨“010203”⟩=⟨“0102”⟩++⟨“03”⟩
107 54 11 56 60 104 43 81 83 106 vdegp1ci VtxDeg03⟨“010203”⟩3=0+1
108 0p1e1 0+1=1
109 107 108 eqtri VtxDeg03⟨“010203”⟩3=1
110 df-s4 ⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
111 35 110 eqtri iEdg03⟨“01020312”⟩=⟨“010203”⟩++⟨“12”⟩
112 44 11 46 50 109 33 87 90 100 101 111 vdegp1ai VtxDeg03⟨“01020312”⟩3=1
113 df-s5 ⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
114 25 113 eqtri iEdg03⟨“0102031212”⟩=⟨“01020312”⟩++⟨“12”⟩
115 34 11 36 40 112 23 87 90 100 101 114 vdegp1ai VtxDeg03⟨“0102031212”⟩3=1
116 df-s6 ⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
117 12 116 eqtri iEdg03⟨“010203121223”⟩=⟨“0102031212”⟩++⟨“23”⟩
118 24 11 26 30 115 7 100 101 117 vdegp1ci VtxDeg03⟨“010203121223”⟩3=1+1
119 1p1e2 1+1=2
120 118 119 eqtri VtxDeg03⟨“010203121223”⟩3=2
121 1 2 3 konigsbergvtx VtxG=03
122 1 2 3 konigsbergiedg iEdgG=⟨“01020312122323”⟩
123 122 15 eqtri iEdgG=⟨“010203121223”⟩++⟨“23”⟩
124 8 11 13 20 120 121 100 101 123 vdegp1ci VtxDegG3=2+1
125 2p1e3 2+1=3
126 124 125 eqtri VtxDegG3=3