Metamath Proof Explorer


Theorem lanfval

Description: Value of the function generating the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses lanfval.r R = D FuncCat E
lanfval.s S = C FuncCat E
lanfval.c φ C U
lanfval.d φ D V
lanfval.e φ E W
Assertion lanfval Could not format assertion : No typesetting found for |- ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lanfval.r R = D FuncCat E
2 lanfval.s S = C FuncCat E
3 lanfval.c φ C U
4 lanfval.d φ D V
5 lanfval.e φ E W
6 df-lan Could not format Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) : No typesetting found for |- Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) with typecode |-
7 6 a1i Could not format ( ph -> Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) ) : No typesetting found for |- ( ph -> Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) ) with typecode |-
8 fvexd φ p = C D e = E 1 st p V
9 simprl φ p = C D e = E p = C D
10 9 fveq2d φ p = C D e = E 1 st p = 1 st C D
11 op1stg C U D V 1 st C D = C
12 3 4 11 syl2anc φ 1 st C D = C
13 12 adantr φ p = C D e = E 1 st C D = C
14 10 13 eqtrd φ p = C D e = E 1 st p = C
15 fvexd φ p = C D e = E c = C 2 nd p V
16 simplrl φ p = C D e = E c = C p = C D
17 16 fveq2d φ p = C D e = E c = C 2 nd p = 2 nd C D
18 op2ndg C U D V 2 nd C D = D
19 3 4 18 syl2anc φ 2 nd C D = D
20 19 ad2antrr φ p = C D e = E c = C 2 nd C D = D
21 17 20 eqtrd φ p = C D e = E c = C 2 nd p = D
22 simplr φ p = C D e = E c = C d = D c = C
23 simpr φ p = C D e = E c = C d = D d = D
24 22 23 oveq12d φ p = C D e = E c = C d = D c Func d = C Func D
25 simpllr φ p = C D e = E c = C d = D p = C D e = E
26 25 simprd φ p = C D e = E c = C d = D e = E
27 22 26 oveq12d φ p = C D e = E c = C d = D c Func e = C Func E
28 23 26 oveq12d φ p = C D e = E c = C d = D d FuncCat e = D FuncCat E
29 28 1 eqtr4di φ p = C D e = E c = C d = D d FuncCat e = R
30 22 26 oveq12d φ p = C D e = E c = C d = D c FuncCat e = C FuncCat E
31 30 2 eqtr4di φ p = C D e = E c = C d = D c FuncCat e = S
32 29 31 oveq12d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( d FuncCat e ) UP ( c FuncCat e ) ) = ( R UP S ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( d FuncCat e ) UP ( c FuncCat e ) ) = ( R UP S ) ) with typecode |-
33 23 26 opeq12d φ p = C D e = E c = C d = D d e = D E
34 33 oveq1d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( <. d , e >. -o.F f ) = ( <. D , E >. -o.F f ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( <. d , e >. -o.F f ) = ( <. D , E >. -o.F f ) ) with typecode |-
35 eqidd φ p = C D e = E c = C d = D x = x
36 32 34 35 oveq123d Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) = ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) = ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) with typecode |-
37 24 27 36 mpoeq123dv Could not format ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) : No typesetting found for |- ( ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) /\ d = D ) -> ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-
38 15 21 37 csbied2 Could not format ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) : No typesetting found for |- ( ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) /\ c = C ) -> [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-
39 8 14 38 csbied2 Could not format ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) : No typesetting found for |- ( ( ph /\ ( p = <. C , D >. /\ e = E ) ) -> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-
40 3 elexd φ C V
41 4 elexd φ D V
42 40 41 opelxpd φ C D V × V
43 5 elexd φ E V
44 ovex C Func D V
45 ovex C Func E V
46 44 45 mpoex Could not format ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V : No typesetting found for |- ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V with typecode |-
47 46 a1i Could not format ( ph -> ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V ) : No typesetting found for |- ( ph -> ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) e. _V ) with typecode |-
48 7 39 42 43 47 ovmpod Could not format ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) : No typesetting found for |- ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-