Metamath Proof Explorer


Theorem lautj

Description: Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses lautj.b B=BaseK
lautj.j ˙=joinK
lautj.i I=LAutK
Assertion lautj KLatFIXBYBFX˙Y=FX˙FY

Proof

Step Hyp Ref Expression
1 lautj.b B=BaseK
2 lautj.j ˙=joinK
3 lautj.i I=LAutK
4 eqid K=K
5 simpl KLatFIXBYBKLat
6 simpr1 KLatFIXBYBFI
7 5 6 jca KLatFIXBYBKLatFI
8 1 2 latjcl KLatXBYBX˙YB
9 8 3adant3r1 KLatFIXBYBX˙YB
10 1 3 lautcl KLatFIX˙YBFX˙YB
11 7 9 10 syl2anc KLatFIXBYBFX˙YB
12 simpr2 KLatFIXBYBXB
13 1 3 lautcl KLatFIXBFXB
14 7 12 13 syl2anc KLatFIXBYBFXB
15 simpr3 KLatFIXBYBYB
16 1 3 lautcl KLatFIYBFYB
17 7 15 16 syl2anc KLatFIXBYBFYB
18 1 2 latjcl KLatFXBFYBFX˙FYB
19 5 14 17 18 syl3anc KLatFIXBYBFX˙FYB
20 1 3 laut1o KLatFIF:B1-1 ontoB
21 20 3ad2antr1 KLatFIXBYBF:B1-1 ontoB
22 f1ocnvfv1 F:B1-1 ontoBX˙YBF-1FX˙Y=X˙Y
23 21 9 22 syl2anc KLatFIXBYBF-1FX˙Y=X˙Y
24 1 4 2 latlej1 KLatFXBFYBFXKFX˙FY
25 5 14 17 24 syl3anc KLatFIXBYBFXKFX˙FY
26 f1ocnvfv2 F:B1-1 ontoBFX˙FYBFF-1FX˙FY=FX˙FY
27 21 19 26 syl2anc KLatFIXBYBFF-1FX˙FY=FX˙FY
28 25 27 breqtrrd KLatFIXBYBFXKFF-1FX˙FY
29 f1ocnvdm F:B1-1 ontoBFX˙FYBF-1FX˙FYB
30 21 19 29 syl2anc KLatFIXBYBF-1FX˙FYB
31 1 4 3 lautle KLatFIXBF-1FX˙FYBXKF-1FX˙FYFXKFF-1FX˙FY
32 7 12 30 31 syl12anc KLatFIXBYBXKF-1FX˙FYFXKFF-1FX˙FY
33 28 32 mpbird KLatFIXBYBXKF-1FX˙FY
34 1 4 2 latlej2 KLatFXBFYBFYKFX˙FY
35 5 14 17 34 syl3anc KLatFIXBYBFYKFX˙FY
36 35 27 breqtrrd KLatFIXBYBFYKFF-1FX˙FY
37 1 4 3 lautle KLatFIYBF-1FX˙FYBYKF-1FX˙FYFYKFF-1FX˙FY
38 7 15 30 37 syl12anc KLatFIXBYBYKF-1FX˙FYFYKFF-1FX˙FY
39 36 38 mpbird KLatFIXBYBYKF-1FX˙FY
40 1 4 2 latjle12 KLatXBYBF-1FX˙FYBXKF-1FX˙FYYKF-1FX˙FYX˙YKF-1FX˙FY
41 5 12 15 30 40 syl13anc KLatFIXBYBXKF-1FX˙FYYKF-1FX˙FYX˙YKF-1FX˙FY
42 33 39 41 mpbi2and KLatFIXBYBX˙YKF-1FX˙FY
43 23 42 eqbrtrd KLatFIXBYBF-1FX˙YKF-1FX˙FY
44 1 4 3 lautcnvle KLatFIFX˙YBFX˙FYBFX˙YKFX˙FYF-1FX˙YKF-1FX˙FY
45 7 11 19 44 syl12anc KLatFIXBYBFX˙YKFX˙FYF-1FX˙YKF-1FX˙FY
46 43 45 mpbird KLatFIXBYBFX˙YKFX˙FY
47 1 4 2 latlej1 KLatXBYBXKX˙Y
48 47 3adant3r1 KLatFIXBYBXKX˙Y
49 1 4 3 lautle KLatFIXBX˙YBXKX˙YFXKFX˙Y
50 7 12 9 49 syl12anc KLatFIXBYBXKX˙YFXKFX˙Y
51 48 50 mpbid KLatFIXBYBFXKFX˙Y
52 1 4 2 latlej2 KLatXBYBYKX˙Y
53 52 3adant3r1 KLatFIXBYBYKX˙Y
54 1 4 3 lautle KLatFIYBX˙YBYKX˙YFYKFX˙Y
55 7 15 9 54 syl12anc KLatFIXBYBYKX˙YFYKFX˙Y
56 53 55 mpbid KLatFIXBYBFYKFX˙Y
57 1 4 2 latjle12 KLatFXBFYBFX˙YBFXKFX˙YFYKFX˙YFX˙FYKFX˙Y
58 5 14 17 11 57 syl13anc KLatFIXBYBFXKFX˙YFYKFX˙YFX˙FYKFX˙Y
59 51 56 58 mpbi2and KLatFIXBYBFX˙FYKFX˙Y
60 1 4 5 11 19 46 59 latasymd KLatFIXBYBFX˙Y=FX˙FY