| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lautm.b |
|
| 2 |
|
lautm.m |
|
| 3 |
|
lautm.i |
|
| 4 |
|
eqid |
|
| 5 |
|
simpl |
|
| 6 |
|
simpr1 |
|
| 7 |
5 6
|
jca |
|
| 8 |
1 2
|
latmcl |
|
| 9 |
8
|
3adant3r1 |
|
| 10 |
1 3
|
lautcl |
|
| 11 |
7 9 10
|
syl2anc |
|
| 12 |
|
simpr2 |
|
| 13 |
1 3
|
lautcl |
|
| 14 |
7 12 13
|
syl2anc |
|
| 15 |
|
simpr3 |
|
| 16 |
1 3
|
lautcl |
|
| 17 |
7 15 16
|
syl2anc |
|
| 18 |
1 2
|
latmcl |
|
| 19 |
5 14 17 18
|
syl3anc |
|
| 20 |
1 4 2
|
latmle1 |
|
| 21 |
20
|
3adant3r1 |
|
| 22 |
1 4 3
|
lautle |
|
| 23 |
7 9 12 22
|
syl12anc |
|
| 24 |
21 23
|
mpbid |
|
| 25 |
1 4 2
|
latmle2 |
|
| 26 |
25
|
3adant3r1 |
|
| 27 |
1 4 3
|
lautle |
|
| 28 |
7 9 15 27
|
syl12anc |
|
| 29 |
26 28
|
mpbid |
|
| 30 |
1 4 2
|
latlem12 |
|
| 31 |
5 11 14 17 30
|
syl13anc |
|
| 32 |
24 29 31
|
mpbi2and |
|
| 33 |
1 3
|
laut1o |
|
| 34 |
33
|
3ad2antr1 |
|
| 35 |
|
f1ocnvfv2 |
|
| 36 |
34 19 35
|
syl2anc |
|
| 37 |
1 4 2
|
latmle1 |
|
| 38 |
5 14 17 37
|
syl3anc |
|
| 39 |
1 4 3
|
lautcnvle |
|
| 40 |
7 19 14 39
|
syl12anc |
|
| 41 |
38 40
|
mpbid |
|
| 42 |
|
f1ocnvfv1 |
|
| 43 |
34 12 42
|
syl2anc |
|
| 44 |
41 43
|
breqtrd |
|
| 45 |
1 4 2
|
latmle2 |
|
| 46 |
5 14 17 45
|
syl3anc |
|
| 47 |
1 4 3
|
lautcnvle |
|
| 48 |
7 19 17 47
|
syl12anc |
|
| 49 |
46 48
|
mpbid |
|
| 50 |
|
f1ocnvfv1 |
|
| 51 |
34 15 50
|
syl2anc |
|
| 52 |
49 51
|
breqtrd |
|
| 53 |
|
f1ocnvdm |
|
| 54 |
34 19 53
|
syl2anc |
|
| 55 |
1 4 2
|
latlem12 |
|
| 56 |
5 54 12 15 55
|
syl13anc |
|
| 57 |
44 52 56
|
mpbi2and |
|
| 58 |
1 4 3
|
lautle |
|
| 59 |
7 54 9 58
|
syl12anc |
|
| 60 |
57 59
|
mpbid |
|
| 61 |
36 60
|
eqbrtrrd |
|
| 62 |
1 4 5 11 19 32 61
|
latasymd |
|