Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | lbzbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfre1 | |
|
3 | btwnz | |
|
4 | 3 | simpld | |
5 | ssel2 | |
|
6 | zre | |
|
7 | ltleletr | |
|
8 | 6 7 | syl3an1 | |
9 | 8 | expd | |
10 | 9 | 3expia | |
11 | 5 10 | syl5 | |
12 | 11 | expdimp | |
13 | 12 | com23 | |
14 | 13 | imp | |
15 | 14 | ralrimiv | |
16 | ralim | |
|
17 | 15 16 | syl | |
18 | 17 | ex | |
19 | 18 | anasss | |
20 | 19 | expcom | |
21 | 20 | com23 | |
22 | 21 | imp | |
23 | 22 | imdistand | |
24 | breq1 | |
|
25 | 24 | ralbidv | |
26 | 25 | rspcev | |
27 | 23 26 | syl6 | |
28 | 27 | ex | |
29 | 28 | com23 | |
30 | 29 | ancomsd | |
31 | 30 | expdimp | |
32 | 31 | rexlimdv | |
33 | 32 | anasss | |
34 | 33 | expcom | |
35 | 4 34 | mpdi | |
36 | 35 | ex | |
37 | 36 | com23 | |
38 | 1 2 37 | rexlimd | |
39 | zssre | |
|
40 | ssrexv | |
|
41 | 39 40 | ax-mp | |
42 | 38 41 | impbid1 | |