Metamath Proof Explorer


Theorem lbzbi

Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion lbzbi AxyAxyxyAxy

Proof

Step Hyp Ref Expression
1 nfv xA
2 nfre1 xxyAxy
3 btwnz xzz<xzx<z
4 3 simpld xzz<x
5 ssel2 AyAy
6 zre zz
7 ltleletr zxyz<xxyzy
8 6 7 syl3an1 zxyz<xxyzy
9 8 expd zxyz<xxyzy
10 9 3expia zxyz<xxyzy
11 5 10 syl5 zxAyAz<xxyzy
12 11 expdimp zxAyAz<xxyzy
13 12 com23 zxAz<xyAxyzy
14 13 imp zxAz<xyAxyzy
15 14 ralrimiv zxAz<xyAxyzy
16 ralim yAxyzyyAxyyAzy
17 15 16 syl zxAz<xyAxyyAzy
18 17 ex zxAz<xyAxyyAzy
19 18 anasss zxAz<xyAxyyAzy
20 19 expcom xAzz<xyAxyyAzy
21 20 com23 xAz<xzyAxyyAzy
22 21 imp xAz<xzyAxyyAzy
23 22 imdistand xAz<xzyAxyzyAzy
24 breq1 x=zxyzy
25 24 ralbidv x=zyAxyyAzy
26 25 rspcev zyAzyxyAxy
27 23 26 syl6 xAz<xzyAxyxyAxy
28 27 ex xAz<xzyAxyxyAxy
29 28 com23 xAzyAxyz<xxyAxy
30 29 ancomsd xAyAxyzz<xxyAxy
31 30 expdimp xAyAxyzz<xxyAxy
32 31 rexlimdv xAyAxyzz<xxyAxy
33 32 anasss xAyAxyzz<xxyAxy
34 33 expcom AyAxyxzz<xxyAxy
35 4 34 mpdi AyAxyxxyAxy
36 35 ex AyAxyxxyAxy
37 36 com23 AxyAxyxyAxy
38 1 2 37 rexlimd AxyAxyxyAxy
39 zssre
40 ssrexv xyAxyxyAxy
41 39 40 ax-mp xyAxyxyAxy
42 38 41 impbid1 AxyAxyxyAxy