Metamath Proof Explorer


Theorem lcdlkreqN

Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlkreq.h H=LHypK
lcdlkreq.u U=DVecHKW
lcdlkreq.l L=LKerU
lcdlkreq.c C=LCDualKW
lcdlkreq.o 0˙=0C
lcdlkreq.n N=LSpanC
lcdlkreq.v V=BaseC
lcdlkreq.k φKHLWH
lcdlkreq.i φIV
lcdlkreq.g φGNI
lcdlkreq.z φG0˙
Assertion lcdlkreqN φLG=LI

Proof

Step Hyp Ref Expression
1 lcdlkreq.h H=LHypK
2 lcdlkreq.u U=DVecHKW
3 lcdlkreq.l L=LKerU
4 lcdlkreq.c C=LCDualKW
5 lcdlkreq.o 0˙=0C
6 lcdlkreq.n N=LSpanC
7 lcdlkreq.v V=BaseC
8 lcdlkreq.k φKHLWH
9 lcdlkreq.i φIV
10 lcdlkreq.g φGNI
11 lcdlkreq.z φG0˙
12 eqid LFnlU=LFnlU
13 eqid LDualU=LDualU
14 eqid 0LDualU=0LDualU
15 eqid LSpanLDualU=LSpanLDualU
16 1 2 8 dvhlvec φULVec
17 1 4 7 2 12 8 9 lcdvbaselfl φILFnlU
18 9 snssd φIV
19 1 2 13 15 4 7 6 8 18 lcdlsp φNI=LSpanLDualUI
20 10 19 eleqtrd φGLSpanLDualUI
21 1 2 13 14 4 5 8 lcd0v2 φ0˙=0LDualU
22 11 21 neeqtrd φG0LDualU
23 eldifsn GLSpanLDualUI0LDualUGLSpanLDualUIG0LDualU
24 20 22 23 sylanbrc φGLSpanLDualUI0LDualU
25 12 3 13 14 15 16 17 24 lkrlspeqN φLG=LI