Metamath Proof Explorer


Theorem lcdvbase

Description: Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdvbase.h H=LHypK
lcdvbase.o ˙=ocHKW
lcdvbase.c C=LCDualKW
lcdvbase.v V=BaseC
lcdvbase.u U=DVecHKW
lcdvbase.f F=LFnlU
lcdvbase.l L=LKerU
lcdvbase.b B=fF|˙˙Lf=Lf
lcdvbase.k φKHLWH
Assertion lcdvbase φV=B

Proof

Step Hyp Ref Expression
1 lcdvbase.h H=LHypK
2 lcdvbase.o ˙=ocHKW
3 lcdvbase.c C=LCDualKW
4 lcdvbase.v V=BaseC
5 lcdvbase.u U=DVecHKW
6 lcdvbase.f F=LFnlU
7 lcdvbase.l L=LKerU
8 lcdvbase.b B=fF|˙˙Lf=Lf
9 lcdvbase.k φKHLWH
10 eqid LDualU=LDualU
11 1 2 3 5 6 7 10 9 8 lcdval2 φC=LDualU𝑠B
12 11 fveq2d φBaseC=BaseLDualU𝑠B
13 4 12 eqtrid φV=BaseLDualU𝑠B
14 ssrab2 fF|˙˙Lf=LfF
15 8 14 eqsstri BF
16 eqid BaseLDualU=BaseLDualU
17 1 5 9 dvhlmod φULMod
18 6 10 16 17 ldualvbase φBaseLDualU=F
19 15 18 sseqtrrid φBBaseLDualU
20 eqid LDualU𝑠B=LDualU𝑠B
21 20 16 ressbas2 BBaseLDualUB=BaseLDualU𝑠B
22 19 21 syl φB=BaseLDualU𝑠B
23 13 22 eqtr4d φV=B