| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcf1o.h |  | 
						
							| 2 |  | lcf1o.o |  | 
						
							| 3 |  | lcf1o.u |  | 
						
							| 4 |  | lcf1o.v |  | 
						
							| 5 |  | lcf1o.a |  | 
						
							| 6 |  | lcf1o.t |  | 
						
							| 7 |  | lcf1o.s |  | 
						
							| 8 |  | lcf1o.r |  | 
						
							| 9 |  | lcf1o.z |  | 
						
							| 10 |  | lcf1o.f |  | 
						
							| 11 |  | lcf1o.l |  | 
						
							| 12 |  | lcf1o.d |  | 
						
							| 13 |  | lcf1o.q |  | 
						
							| 14 |  | lcf1o.c |  | 
						
							| 15 |  | lcf1o.j |  | 
						
							| 16 |  | lcflo.k |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | eqeq2d |  | 
						
							| 19 | 18 | cbvrexvw |  | 
						
							| 20 |  | oveq1 |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 | 21 | eqeq2d |  | 
						
							| 23 | 22 | rexbidv |  | 
						
							| 24 | 19 23 | bitrid |  | 
						
							| 25 | 24 | cbvriotavw |  | 
						
							| 26 |  | eqeq1 |  | 
						
							| 27 | 26 | rexbidv |  | 
						
							| 28 | 27 | riotabidv |  | 
						
							| 29 | 25 28 | eqtrid |  | 
						
							| 30 | 29 | cbvmptv |  | 
						
							| 31 |  | sneq |  | 
						
							| 32 | 31 | fveq2d |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 | 33 | oveq2d |  | 
						
							| 35 | 34 | eqeq2d |  | 
						
							| 36 | 32 35 | rexeqbidv |  | 
						
							| 37 | 36 | riotabidv |  | 
						
							| 38 | 37 | mpteq2dv |  | 
						
							| 39 | 30 38 | eqtrid |  | 
						
							| 40 | 39 | cbvmptv |  | 
						
							| 41 | 15 40 | eqtri |  | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16 | lcfrlem9 |  |