Metamath Proof Explorer


Theorem lcf1o

Description: Define a function J that provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H=LHypK
lcf1o.o ˙=ocHKW
lcf1o.u U=DVecHKW
lcf1o.v V=BaseU
lcf1o.a +˙=+U
lcf1o.t ·˙=U
lcf1o.s S=ScalarU
lcf1o.r R=BaseS
lcf1o.z 0˙=0U
lcf1o.f F=LFnlU
lcf1o.l L=LKerU
lcf1o.d D=LDualU
lcf1o.q Q=0D
lcf1o.c C=fF|˙˙Lf=Lf
lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcflo.k φKHLWH
Assertion lcf1o φJ:V0˙1-1 ontoCQ

Proof

Step Hyp Ref Expression
1 lcf1o.h H=LHypK
2 lcf1o.o ˙=ocHKW
3 lcf1o.u U=DVecHKW
4 lcf1o.v V=BaseU
5 lcf1o.a +˙=+U
6 lcf1o.t ·˙=U
7 lcf1o.s S=ScalarU
8 lcf1o.r R=BaseS
9 lcf1o.z 0˙=0U
10 lcf1o.f F=LFnlU
11 lcf1o.l L=LKerU
12 lcf1o.d D=LDualU
13 lcf1o.q Q=0D
14 lcf1o.c C=fF|˙˙Lf=Lf
15 lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
16 lcflo.k φKHLWH
17 oveq1 w=zw+˙k·˙x=z+˙k·˙x
18 17 eqeq2d w=zv=w+˙k·˙xv=z+˙k·˙x
19 18 cbvrexvw w˙xv=w+˙k·˙xz˙xv=z+˙k·˙x
20 oveq1 k=lk·˙x=l·˙x
21 20 oveq2d k=lz+˙k·˙x=z+˙l·˙x
22 21 eqeq2d k=lv=z+˙k·˙xv=z+˙l·˙x
23 22 rexbidv k=lz˙xv=z+˙k·˙xz˙xv=z+˙l·˙x
24 19 23 bitrid k=lw˙xv=w+˙k·˙xz˙xv=z+˙l·˙x
25 24 cbvriotavw ιkR|w˙xv=w+˙k·˙x=ιlR|z˙xv=z+˙l·˙x
26 eqeq1 v=uv=z+˙l·˙xu=z+˙l·˙x
27 26 rexbidv v=uz˙xv=z+˙l·˙xz˙xu=z+˙l·˙x
28 27 riotabidv v=uιlR|z˙xv=z+˙l·˙x=ιlR|z˙xu=z+˙l·˙x
29 25 28 eqtrid v=uιkR|w˙xv=w+˙k·˙x=ιlR|z˙xu=z+˙l·˙x
30 29 cbvmptv vVιkR|w˙xv=w+˙k·˙x=uVιlR|z˙xu=z+˙l·˙x
31 sneq x=yx=y
32 31 fveq2d x=y˙x=˙y
33 oveq2 x=yl·˙x=l·˙y
34 33 oveq2d x=yz+˙l·˙x=z+˙l·˙y
35 34 eqeq2d x=yu=z+˙l·˙xu=z+˙l·˙y
36 32 35 rexeqbidv x=yz˙xu=z+˙l·˙xz˙yu=z+˙l·˙y
37 36 riotabidv x=yιlR|z˙xu=z+˙l·˙x=ιlR|z˙yu=z+˙l·˙y
38 37 mpteq2dv x=yuVιlR|z˙xu=z+˙l·˙x=uVιlR|z˙yu=z+˙l·˙y
39 30 38 eqtrid x=yvVιkR|w˙xv=w+˙k·˙x=uVιlR|z˙yu=z+˙l·˙y
40 39 cbvmptv xV0˙vVιkR|w˙xv=w+˙k·˙x=yV0˙uVιlR|z˙yu=z+˙l·˙y
41 15 40 eqtri J=yV0˙uVιlR|z˙yu=z+˙l·˙y
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16 lcfrlem9 φJ:V0˙1-1 ontoCQ