Description: Lemma for lclkr . Eliminate the X =/= .0. , Y =/= .0. hypotheses. (Contributed by NM, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2f.h | |
|
lclkrlem2f.o | |
||
lclkrlem2f.u | |
||
lclkrlem2f.v | |
||
lclkrlem2f.s | |
||
lclkrlem2f.q | |
||
lclkrlem2f.z | |
||
lclkrlem2f.a | |
||
lclkrlem2f.n | |
||
lclkrlem2f.f | |
||
lclkrlem2f.j | |
||
lclkrlem2f.l | |
||
lclkrlem2f.d | |
||
lclkrlem2f.p | |
||
lclkrlem2f.k | |
||
lclkrlem2f.b | |
||
lclkrlem2f.e | |
||
lclkrlem2f.g | |
||
lclkrlem2f.le | |
||
lclkrlem2f.lg | |
||
lclkrlem2f.kb | |
||
lclkrlem2f.nx | |
||
lclkrlem2l.x | |
||
lclkrlem2l.y | |
||
Assertion | lclkrlem2l | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | |
|
2 | lclkrlem2f.o | |
|
3 | lclkrlem2f.u | |
|
4 | lclkrlem2f.v | |
|
5 | lclkrlem2f.s | |
|
6 | lclkrlem2f.q | |
|
7 | lclkrlem2f.z | |
|
8 | lclkrlem2f.a | |
|
9 | lclkrlem2f.n | |
|
10 | lclkrlem2f.f | |
|
11 | lclkrlem2f.j | |
|
12 | lclkrlem2f.l | |
|
13 | lclkrlem2f.d | |
|
14 | lclkrlem2f.p | |
|
15 | lclkrlem2f.k | |
|
16 | lclkrlem2f.b | |
|
17 | lclkrlem2f.e | |
|
18 | lclkrlem2f.g | |
|
19 | lclkrlem2f.le | |
|
20 | lclkrlem2f.lg | |
|
21 | lclkrlem2f.kb | |
|
22 | lclkrlem2f.nx | |
|
23 | lclkrlem2l.x | |
|
24 | lclkrlem2l.y | |
|
25 | 15 | adantr | |
26 | 16 | adantr | |
27 | 17 | adantr | |
28 | 18 | adantr | |
29 | 19 | adantr | |
30 | 20 | adantr | |
31 | 21 | adantr | |
32 | 22 | adantr | |
33 | simpr | |
|
34 | 24 | adantr | |
35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 26 27 28 29 30 31 32 33 34 | lclkrlem2k | |
36 | 15 | adantr | |
37 | 16 | adantr | |
38 | 17 | adantr | |
39 | 18 | adantr | |
40 | 19 | adantr | |
41 | 20 | adantr | |
42 | 21 | adantr | |
43 | 22 | adantr | |
44 | 23 | adantr | |
45 | simpr | |
|
46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 37 38 39 40 41 42 43 44 45 | lclkrlem2j | |
47 | 15 | adantr | |
48 | 16 | adantr | |
49 | 17 | adantr | |
50 | 18 | adantr | |
51 | 19 | adantr | |
52 | 20 | adantr | |
53 | 21 | adantr | |
54 | 22 | adantr | |
55 | 23 | adantr | |
56 | simprl | |
|
57 | eldifsn | |
|
58 | 55 56 57 | sylanbrc | |
59 | 24 | adantr | |
60 | simprr | |
|
61 | eldifsn | |
|
62 | 59 60 61 | sylanbrc | |
63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 48 49 50 51 52 53 54 58 62 | lclkrlem2i | |
64 | 35 46 63 | pm2.61da2ne | |