Metamath Proof Explorer


Theorem lclkrlem2l

Description: Lemma for lclkr . Eliminate the X =/= .0. , Y =/= .0. hypotheses. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H=LHypK
lclkrlem2f.o ˙=ocHKW
lclkrlem2f.u U=DVecHKW
lclkrlem2f.v V=BaseU
lclkrlem2f.s S=ScalarU
lclkrlem2f.q Q=0S
lclkrlem2f.z 0˙=0U
lclkrlem2f.a ˙=LSSumU
lclkrlem2f.n N=LSpanU
lclkrlem2f.f F=LFnlU
lclkrlem2f.j J=LSHypU
lclkrlem2f.l L=LKerU
lclkrlem2f.d D=LDualU
lclkrlem2f.p +˙=+D
lclkrlem2f.k φKHLWH
lclkrlem2f.b φBV0˙
lclkrlem2f.e φEF
lclkrlem2f.g φGF
lclkrlem2f.le φLE=˙X
lclkrlem2f.lg φLG=˙Y
lclkrlem2f.kb φE+˙GB=Q
lclkrlem2f.nx φ¬X˙B¬Y˙B
lclkrlem2l.x φXV
lclkrlem2l.y φYV
Assertion lclkrlem2l φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H=LHypK
2 lclkrlem2f.o ˙=ocHKW
3 lclkrlem2f.u U=DVecHKW
4 lclkrlem2f.v V=BaseU
5 lclkrlem2f.s S=ScalarU
6 lclkrlem2f.q Q=0S
7 lclkrlem2f.z 0˙=0U
8 lclkrlem2f.a ˙=LSSumU
9 lclkrlem2f.n N=LSpanU
10 lclkrlem2f.f F=LFnlU
11 lclkrlem2f.j J=LSHypU
12 lclkrlem2f.l L=LKerU
13 lclkrlem2f.d D=LDualU
14 lclkrlem2f.p +˙=+D
15 lclkrlem2f.k φKHLWH
16 lclkrlem2f.b φBV0˙
17 lclkrlem2f.e φEF
18 lclkrlem2f.g φGF
19 lclkrlem2f.le φLE=˙X
20 lclkrlem2f.lg φLG=˙Y
21 lclkrlem2f.kb φE+˙GB=Q
22 lclkrlem2f.nx φ¬X˙B¬Y˙B
23 lclkrlem2l.x φXV
24 lclkrlem2l.y φYV
25 15 adantr φX=0˙KHLWH
26 16 adantr φX=0˙BV0˙
27 17 adantr φX=0˙EF
28 18 adantr φX=0˙GF
29 19 adantr φX=0˙LE=˙X
30 20 adantr φX=0˙LG=˙Y
31 21 adantr φX=0˙E+˙GB=Q
32 22 adantr φX=0˙¬X˙B¬Y˙B
33 simpr φX=0˙X=0˙
34 24 adantr φX=0˙YV
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 26 27 28 29 30 31 32 33 34 lclkrlem2k φX=0˙˙˙LE+˙G=LE+˙G
36 15 adantr φY=0˙KHLWH
37 16 adantr φY=0˙BV0˙
38 17 adantr φY=0˙EF
39 18 adantr φY=0˙GF
40 19 adantr φY=0˙LE=˙X
41 20 adantr φY=0˙LG=˙Y
42 21 adantr φY=0˙E+˙GB=Q
43 22 adantr φY=0˙¬X˙B¬Y˙B
44 23 adantr φY=0˙XV
45 simpr φY=0˙Y=0˙
46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 37 38 39 40 41 42 43 44 45 lclkrlem2j φY=0˙˙˙LE+˙G=LE+˙G
47 15 adantr φX0˙Y0˙KHLWH
48 16 adantr φX0˙Y0˙BV0˙
49 17 adantr φX0˙Y0˙EF
50 18 adantr φX0˙Y0˙GF
51 19 adantr φX0˙Y0˙LE=˙X
52 20 adantr φX0˙Y0˙LG=˙Y
53 21 adantr φX0˙Y0˙E+˙GB=Q
54 22 adantr φX0˙Y0˙¬X˙B¬Y˙B
55 23 adantr φX0˙Y0˙XV
56 simprl φX0˙Y0˙X0˙
57 eldifsn XV0˙XVX0˙
58 55 56 57 sylanbrc φX0˙Y0˙XV0˙
59 24 adantr φX0˙Y0˙YV
60 simprr φX0˙Y0˙Y0˙
61 eldifsn YV0˙YVY0˙
62 59 60 61 sylanbrc φX0˙Y0˙YV0˙
63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 47 48 49 50 51 52 53 54 58 62 lclkrlem2i φX0˙Y0˙˙˙LE+˙G=LE+˙G
64 35 46 63 pm2.61da2ne φ˙˙LE+˙G=LE+˙G