Metamath Proof Explorer


Theorem lclkrlem2n

Description: Lemma for lclkr . (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2n.w φULVec
lclkrlem2n.j φE+˙GX=0˙
lclkrlem2n.k φE+˙GY=0˙
Assertion lclkrlem2n φNXYLE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2n.w φULVec
18 lclkrlem2n.j φE+˙GX=0˙
19 lclkrlem2n.k φE+˙GY=0˙
20 eqid LSubSpU=LSubSpU
21 lveclmod ULVecULMod
22 17 21 syl φULMod
23 8 9 10 22 13 14 ldualvaddcl φE+˙GF
24 8 16 20 lkrlss ULModE+˙GFLE+˙GLSubSpU
25 22 23 24 syl2anc φLE+˙GLSubSpU
26 1 3 5 8 16 17 23 11 ellkr2 φXLE+˙GE+˙GX=0˙
27 18 26 mpbird φXLE+˙G
28 1 3 5 8 16 17 23 12 ellkr2 φYLE+˙GE+˙GY=0˙
29 19 28 mpbird φYLE+˙G
30 20 15 22 25 27 29 lspprss φNXYLE+˙G