Metamath Proof Explorer


Theorem lcmfledvds

Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfledvds ZZFin0ZKmZmKlcm_ZK

Proof

Step Hyp Ref Expression
1 lcmfn0val ZZFin0Zlcm_Z=supk|mZmk<
2 1 adantr ZZFin0ZKmZmKlcm_Z=supk|mZmk<
3 ssrab2 k|mZmk
4 nnuz =1
5 3 4 sseqtri k|mZmk1
6 simpr ZKmZmKKmZmK
7 breq2 k=KmkmK
8 7 ralbidv k=KmZmkmZmK
9 8 elrab Kk|mZmkKmZmK
10 6 9 sylibr ZKmZmKKk|mZmk
11 infssuzle k|mZmk1Kk|mZmksupk|mZmk<K
12 5 10 11 sylancr ZKmZmKsupk|mZmk<K
13 12 3ad2antl1 ZZFin0ZKmZmKsupk|mZmk<K
14 2 13 eqbrtrd ZZFin0ZKmZmKlcm_ZK
15 14 ex ZZFin0ZKmZmKlcm_ZK