Metamath Proof Explorer


Theorem lcmf

Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020)

Ref Expression
Assertion lcmf KZZFin0ZK=lcm_ZmZmKkmZmkKk

Proof

Step Hyp Ref Expression
1 dvdslcmf ZZFinmZmlcm_Z
2 1 3adant3 ZZFin0ZmZmlcm_Z
3 lcmfledvds ZZFin0ZkmZmklcm_Zk
4 3 expdimp ZZFin0ZkmZmklcm_Zk
5 4 ralrimiva ZZFin0ZkmZmklcm_Zk
6 2 5 jca ZZFin0ZmZmlcm_ZkmZmklcm_Zk
7 6 adantl KZZFin0ZmZmlcm_ZkmZmklcm_Zk
8 breq2 K=lcm_ZmKmlcm_Z
9 8 ralbidv K=lcm_ZmZmKmZmlcm_Z
10 breq1 K=lcm_ZKklcm_Zk
11 10 imbi2d K=lcm_ZmZmkKkmZmklcm_Zk
12 11 ralbidv K=lcm_ZkmZmkKkkmZmklcm_Zk
13 9 12 anbi12d K=lcm_ZmZmKkmZmkKkmZmlcm_ZkmZmklcm_Zk
14 7 13 syl5ibrcom KZZFin0ZK=lcm_ZmZmKkmZmkKk
15 lcmfn0cl ZZFin0Zlcm_Z
16 15 adantl KZZFin0Zlcm_Z
17 breq2 k=lcm_Zmkmlcm_Z
18 17 ralbidv k=lcm_ZmZmkmZmlcm_Z
19 breq2 k=lcm_ZKkKlcm_Z
20 18 19 imbi12d k=lcm_ZmZmkKkmZmlcm_ZKlcm_Z
21 20 rspcv lcm_ZkmZmkKkmZmlcm_ZKlcm_Z
22 16 21 syl KZZFin0ZkmZmkKkmZmlcm_ZKlcm_Z
23 22 adantld KZZFin0ZmZmKkmZmkKkmZmlcm_ZKlcm_Z
24 2 adantl KZZFin0ZmZmlcm_Z
25 nnre KK
26 15 nnred ZZFin0Zlcm_Z
27 leloe Klcm_ZKlcm_ZK<lcm_ZK=lcm_Z
28 25 26 27 syl2an KZZFin0ZKlcm_ZK<lcm_ZK=lcm_Z
29 lcmfledvds ZZFin0ZKmZmKlcm_ZK
30 29 expd ZZFin0ZKmZmKlcm_ZK
31 30 impcom KZZFin0ZmZmKlcm_ZK
32 lenlt lcm_ZKlcm_ZK¬K<lcm_Z
33 26 25 32 syl2anr KZZFin0Zlcm_ZK¬K<lcm_Z
34 pm2.21 ¬K<lcm_ZK<lcm_ZK=lcm_Z
35 33 34 syl6bi KZZFin0Zlcm_ZKK<lcm_ZK=lcm_Z
36 31 35 syldc mZmKKZZFin0ZK<lcm_ZK=lcm_Z
37 36 adantr mZmKkmZmkKkKZZFin0ZK<lcm_ZK=lcm_Z
38 37 com13 K<lcm_ZKZZFin0ZmZmKkmZmkKkK=lcm_Z
39 2a1 K=lcm_ZKZZFin0ZmZmKkmZmkKkK=lcm_Z
40 38 39 jaoi K<lcm_ZK=lcm_ZKZZFin0ZmZmKkmZmkKkK=lcm_Z
41 40 com12 KZZFin0ZK<lcm_ZK=lcm_ZmZmKkmZmkKkK=lcm_Z
42 28 41 sylbid KZZFin0ZKlcm_ZmZmKkmZmkKkK=lcm_Z
43 24 42 embantd KZZFin0ZmZmlcm_ZKlcm_ZmZmKkmZmkKkK=lcm_Z
44 43 com23 KZZFin0ZmZmKkmZmkKkmZmlcm_ZKlcm_ZK=lcm_Z
45 23 44 mpdd KZZFin0ZmZmKkmZmkKkK=lcm_Z
46 14 45 impbid KZZFin0ZK=lcm_ZmZmKkmZmkKk