Metamath Proof Explorer


Theorem lcvfbr

Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S=LSubSpW
lcvfbr.c C=LW
lcvfbr.w φWX
Assertion lcvfbr φC=tu|tSuStu¬sStssu

Proof

Step Hyp Ref Expression
1 lcvfbr.s S=LSubSpW
2 lcvfbr.c C=LW
3 lcvfbr.w φWX
4 elex WXWV
5 fveq2 w=WLSubSpw=LSubSpW
6 5 1 eqtr4di w=WLSubSpw=S
7 6 eleq2d w=WtLSubSpwtS
8 6 eleq2d w=WuLSubSpwuS
9 7 8 anbi12d w=WtLSubSpwuLSubSpwtSuS
10 6 rexeqdv w=WsLSubSpwtssusStssu
11 10 notbid w=W¬sLSubSpwtssu¬sStssu
12 11 anbi2d w=Wtu¬sLSubSpwtssutu¬sStssu
13 9 12 anbi12d w=WtLSubSpwuLSubSpwtu¬sLSubSpwtssutSuStu¬sStssu
14 13 opabbidv w=Wtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu=tu|tSuStu¬sStssu
15 df-lcv L=wVtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu
16 1 fvexi SV
17 16 16 xpex S×SV
18 opabssxp tu|tSuStu¬sStssuS×S
19 17 18 ssexi tu|tSuStu¬sStssuV
20 14 15 19 fvmpt WVLW=tu|tSuStu¬sStssu
21 3 4 20 3syl φLW=tu|tSuStu¬sStssu
22 2 21 eqtrid φC=tu|tSuStu¬sStssu