Metamath Proof Explorer


Theorem ldualvsub

Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses ldualvsub.r R = Scalar W
ldualvsub.n N = inv g R
ldualvsub.u 1 ˙ = 1 R
ldualvsub.f F = LFnl W
ldualvsub.d D = LDual W
ldualvsub.p + ˙ = + D
ldualvsub.t · ˙ = D
ldualvsub.m - ˙ = - D
ldualvsub.w φ W LMod
ldualvsub.g φ G F
ldualvsub.h φ H F
Assertion ldualvsub φ G - ˙ H = G + ˙ N 1 ˙ · ˙ H

Proof

Step Hyp Ref Expression
1 ldualvsub.r R = Scalar W
2 ldualvsub.n N = inv g R
3 ldualvsub.u 1 ˙ = 1 R
4 ldualvsub.f F = LFnl W
5 ldualvsub.d D = LDual W
6 ldualvsub.p + ˙ = + D
7 ldualvsub.t · ˙ = D
8 ldualvsub.m - ˙ = - D
9 ldualvsub.w φ W LMod
10 ldualvsub.g φ G F
11 ldualvsub.h φ H F
12 5 9 lduallmod φ D LMod
13 eqid Base D = Base D
14 4 5 13 9 10 ldualelvbase φ G Base D
15 4 5 13 9 11 ldualelvbase φ H Base D
16 eqid Scalar D = Scalar D
17 eqid inv g Scalar D = inv g Scalar D
18 eqid 1 Scalar D = 1 Scalar D
19 13 6 8 16 7 17 18 lmodvsubval2 D LMod G Base D H Base D G - ˙ H = G + ˙ inv g Scalar D 1 Scalar D · ˙ H
20 12 14 15 19 syl3anc φ G - ˙ H = G + ˙ inv g Scalar D 1 Scalar D · ˙ H
21 eqid opp r R = opp r R
22 21 2 opprneg N = inv g opp r R
23 1 21 5 16 9 ldualsca φ Scalar D = opp r R
24 23 fveq2d φ inv g Scalar D = inv g opp r R
25 22 24 eqtr4id φ N = inv g Scalar D
26 21 3 oppr1 1 ˙ = 1 opp r R
27 23 fveq2d φ 1 Scalar D = 1 opp r R
28 26 27 eqtr4id φ 1 ˙ = 1 Scalar D
29 25 28 fveq12d φ N 1 ˙ = inv g Scalar D 1 Scalar D
30 29 oveq1d φ N 1 ˙ · ˙ H = inv g Scalar D 1 Scalar D · ˙ H
31 30 oveq2d φ G + ˙ N 1 ˙ · ˙ H = G + ˙ inv g Scalar D 1 Scalar D · ˙ H
32 20 31 eqtr4d φ G - ˙ H = G + ˙ N 1 ˙ · ˙ H