Metamath Proof Explorer


Theorem leatb

Description: A poset element less than or equal to an atom equals either zero or the atom. ( atss analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses leatom.b B=BaseK
leatom.l ˙=K
leatom.z 0˙=0.K
leatom.a A=AtomsK
Assertion leatb KOPXBPAX˙PX=PX=0˙

Proof

Step Hyp Ref Expression
1 leatom.b B=BaseK
2 leatom.l ˙=K
3 leatom.z 0˙=0.K
4 leatom.a A=AtomsK
5 1 2 3 op0le KOPXB0˙˙X
6 5 3adant3 KOPXBPA0˙˙X
7 6 biantrurd KOPXBPAX˙P0˙˙XX˙P
8 opposet KOPKPoset
9 8 3ad2ant1 KOPXBPAKPoset
10 1 3 op0cl KOP0˙B
11 1 4 atbase PAPB
12 id XBXB
13 10 11 12 3anim123i KOPPAXB0˙BPBXB
14 13 3com23 KOPXBPA0˙BPBXB
15 eqid K=K
16 3 15 4 atcvr0 KOPPA0˙KP
17 16 3adant2 KOPXBPA0˙KP
18 1 2 15 cvrnbtwn4 KPoset0˙BPBXB0˙KP0˙˙XX˙P0˙=XX=P
19 9 14 17 18 syl3anc KOPXBPA0˙˙XX˙P0˙=XX=P
20 eqcom 0˙=XX=0˙
21 20 orbi1i 0˙=XX=PX=0˙X=P
22 19 21 bitrdi KOPXBPA0˙˙XX˙PX=0˙X=P
23 7 22 bitrd KOPXBPAX˙PX=0˙X=P
24 orcom X=0˙X=PX=PX=0˙
25 23 24 bitrdi KOPXBPAX˙PX=PX=0˙